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SECTION 1

Executive Summary

1.1 Introduction

This report documents the research conducted by the Systems Architecture Laboratory,
Dept. of Electrical and Computer Engineering, George Mason University (GMU) on
Adaptive Architectures for Effects based Operations. While the project was based on
work done under the previous Adaptive Architectures for Heterogeneous Command and
Control (A2HC2) grant, it contained new research directions that reflected the effort to
transition some of the research work to the operational Navy. Indeed, a new task was
added late in the program in support of Operation Iraqi Freedom.

There are many new challenges facing the country, the Department of Defense, and the
Navy in the post September 11, 2001 era. They include the ongoing challenges of
organization, breadth and frequency of military operations, and joint, combined, and
coalition operations. We still face the problems of designing and understanding the
behavior and performance of collaborating command centers, particularly in the context
of network centric operations. We need to conduct effects based operations, and, in
addition to traditional operations, we face an adversary that conducts asymmetric
operations with an untraditional organization and structure that is transnational and that is
difficult to detect, monitor, and, if necessary, defeat. While these transnational threats
have been in existence for some time, the events of 9/11 have elevated their importance
to the highest priority.

One of the newer constructs that the Navy has introduced is that of the Expeditionary
Strike Group (ESG). It is transformational in that it focuses on creating a leaner, more
mobile and flexible force that is capable of responding to a wide spectrum of conflicts
and contingencies. Missions of the ESG range from humanitarian assistance and disaster
relief, to power projection ashore via amphibious or airborne Marine assaults or cruise
missile strikes, to Maritime interdiction operations. The ESG is also capable of
integrating into or leading a joint operation involving some or all of the other services of
the United States Armed Forces.

Previous research, sponsored by the Office of Naval Research, has provided a foundation
for addressing the dynamics of adaptation in a network centric environment we are
observing in war games and experiments as well as in the operational world. These
phenomena include the adaptation of the organizational structure and procedures of the
entities that make up the command and control system to take advantage of the expanding
capabilities afforded by emerging information technology tools.
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The naval services are applying the principles of effects based operations instead of the
more traditional attrition based approaches. For example, the battle plan in Global 2001
was based on Effects Directives that were directly linked to commander's intent and
supported by models and analysis using the CAESAR II/EB Course of Action (COA)
analysis tool (now called Pythia) and techniques that were developed further in this
project. The effects based approaches require a good understanding of the adversary1 .
The problem of understanding and modeling the adversary has become more challenging
as a result of the transnational threats that have emerged.

Because of the importance and challenges presented by transnational threats, we
proposed a new thrust in our research activities. We needed to develop tools and
techniques that provide the capability to anticipate the potential actions of a transnational
adversary so that appropriate actions can be taken. The need for this predictive capability
adds complexity to the Effects Based Operations problem that we have been addressing
using influence nets and discrete event system models. In our preliminary assessment
and formulation of the problem, we postulate that transnational threats can be thought of
as having both an operational architecture and a non-traditional systems architecture. By
using our modeling and analysis tools and techniques to develop and understand the
operational architecture, it may be possible to infer portions of the systems architecture.
The systems architecture can then be exploited to obtain information about the status of
operations within the transnational organization. Thus, an important new thrust was to
formalize a procedure for modeling transnational threats as loosely-coupled, network-
type organizations so that effects based analysis can be preformed.

We have learned a great deal about using the tool we developed, named Pythia, to
support the planning of effects based operations. The lessons learned have suggested
what new capabilities should be developed. In particular, we recognized the need to
extend the tool capabilities and develop the procedures to support not only effects based
Course of Action development, but also effects based execution and assessment.

1.2 Objectives

We proposed four main thrusts(objectives). The first objective was to develop the theory
and modeling techniques to provide a predictive capability against transnational threats.
The second objective was to continue to expand the capability of the effects based
operations tools to support the integrated Course of Action planning of lethal, non-lethal
(e.g. information operations), and ISR operations, and monitoring and assessment of
operations using feedback from resources and ISR sensors. The third objective was to
continue the collaborative efforts with the Naval Post Graduate School, the University of
Connecticut, Carnegie Mellon University, and others in the model driven experimentation
paradigm that has been employed successfully in A2C2. Finally the fourth objective was
outreach research, which evolved in supporting the Expeditionary Strike Group through a
series of interactions.

Wagenhals, L.W., "An Operational Concept For Effects Based Course-Of-Action Development And

Evaluation In A War Game", Proc. of the 2002 SPIE Aerosense Conference, Orlando, FL, April 2002
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1.3 Tasks

The scope of work of this research project consisted of four tasks; a brief summary of the
work done in each task is included.

Task 1: Effects Based Operations against Transnational Threats

A terrorist network can be described in terms of its operational and system architectures
but the mapping between these architectures is less well known and understood since the
operational architecture can be mapped into numerous system architectures that are
flexible and reconfigurable and contain target sets that are both hard and soft targets such
as political, religious, social and economic networks. Traditional attrition-based warfare
focuses on destroying the hard targets of the system architecture of the adversary but
terrorists are very much unlike the military forces modeled in force-on-force type
engagements and hence, to suppress, if not destroy, transnational terrorism it will be
necessary to attack and destroy not their system architecture but their operational
architecture-their ability to conduct operational activities in support of their goals. The
concept of effects based operations lends itself well to modeling and assessing
approaches to destroying, degrading or disrupting terrorist acts. The CAESAR II/EB
research tool has been used to construct influence nets and courses of action to mitigate
terrorist attacks. The findings from this exploratory research are presented in Section 2 of
this report. This is work in progress and much remains to be done.

Task 2: Models to support effects based operations

At the core of the effects based modeling approach is the modeling of courses of action to
produce the desired effects by using Influence nets. In earlier work, the static influence
net theory was extended by introducing Timed Influence nets (TINs). Section 3 presents
an algorithm for transforming Timed Influence Nets into TimeSliced Bayesian Networks
(TSBN). The advantage of TINs lies in their ability to represent both causal and time-
sensitive information in a compact and integrated manner. They are used to help a
decision maker model the causal and temporal interdependencies among variables in a
system. The TIN formalism offers a suite of analysis tools that can be used by a user to
analyze the impact of alternate courses of actions on likely outcomes. An even larger, and
more robust suite of analysis tools exists for TSBNs. These algorithms also allow
analyses that are not available in the TIN formalism, e.g., provision for incorporating
real-time information in the form of evidence regarding certain variables and calculating
its impact on the rest of the system. The knowledge acquisition process of TSBNs,
however, is intractable for large models. This work constitutes an attempt to combine the
advantages of both modeling paradigms, TIN and TSBN, into a single formalism by
providing a mapping from a TIN to a TSBN. The new formalism uses the TIN approach
for the model building and the TSBN for analysis and evaluation. A system analyst, in
this combined approach, interacts with a TIN, and the analysis results obtained on the
TSBN are mapped back to the TIN, making the transformation completely hidden to the
analyst.
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In a second sub-task, an approach for belief updating in Timed Influence Nets was
developed. Influence Nets provide graphical representation of causal or influencing
relationships in complex situations. They are used to model and evaluate courses of
actions in certain domains and to compare the performance of actions based on the
desired outcome. In Timed Influence Nets, the impact or effect of these actions on target
variables is not instantaneous. This is modeled by adding communication and processing
delays in the model. The approach provides a technique for updating the beliefs of
variables in the model over time once new evidence is received about some of the
variables in the model. The objective is to assess the behavior of the variables of interest
as a function of both the timing of actions and the receipt of evidence on indicators, thus
providing aid to decision makers in the revision of the planned courses of actions. The
results of this effort are described in Section 4.

A further research effort focused on developing structural and parametric enhancements
to the Timed Influence Nets. The existing TIN framework does not have the capability to
model the impact of different sequences of actions. Thus, no matter what the sequence of
action is, the final outcome remains the same. Furthermore, it is assumed that the
influence of an event on another event is stationary, i.e., the influence remains the same
throughout the campaign. Both of these constraints may turn out to be unrealistic in many
real world situations. The enhancements introduced in Section 5 of this report would
overcome the above two limitations. The proposed structural enhancement would enable
a system modeler to model the impacts of different sequences of actions on the desired
effect; while the parametric enhancements would aid the mathematical modeling of time-
varying influences. Together these enhancements make it possible to model the impact of
repetitive actions in a dynamic uncertain situation.

In Section 6, an Evolutionary Algorithm (EA) based approach for finding effective
courses of action (COAs) in a complex uncertain situation is described. The complex
situation is modeled using the TIN probabilistic modeling and reasoning framework. The
TIN-based framework helps a system modeler in connecting a set of actionable events
and a set of desired effects through chains of cause and effect relationships. Once a TIN
is built, the optimization task confronted by the modeler is to identify a course of action
that would increase the likelihood of achieving the desired effects over a pre-specified
time interval. This research task used EAs to accomplish the optimization. The proposed
approach generates multiple COAs that are close enough in terms of achieving the
desired effect. The purpose of generating multiple COAs is to give several alternatives to
a decision maker. Moreover, the alternate COAs could be generalized based on the
relationships that exist among the actions and their timings of executions. While
determining an effective course of action in a given situation, a system modeler has to
consider several temporal/causal constraints that are present in a problem domain. The
approach also includes a constraint specification language that would help a system
modeler in specifying these constraints.

Task 3: Model driven experimentation

Future command and control centers are being designed to exploit the capabilities offered
by information technologies; models of these proposed architectures are necessary to
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predict the performance of alternative designs. However, many of the performance
metrics that these future centers will be evaluated on, such as speed of command and
shared situational awareness, have not been included in previous command and control
models. An enhanced command center model has been created that combines both a task
process model and a decision maker model in order to provide the necessary degrees of
freedom required to evaluate such performance metrics. The task process model was
developed as part of a recent pre-experimental modeling iteration for a subject
experiment and captures the stages of a task over its lifetime; the decision maker model is
required in order to explicitly represent the interaction between decision makers as they
process the task. This enhanced model will allow sophisticated modeling of interactions
between decision makers, such as decision maker synchronization and information
sharing. By combining the task process model with the decision maker model, surrogate
measures of speed of command and situation awareness can be developed and used to
evaluate the behavior and performance of command and control information and decision
processes, essential to assess any future command and control architecture. The results of
this task are described in Section 7.

Task 4: Outreach Research

The outreach effort had two components. The first one was focused on providing support,
as part of the A2C2 Program Team, to the Expeditionary Strike Group One as it prepared
for deployment in the summer of 2005. This included visits with the ESG 1 Commander,
Rear Admiral Michael LeFever, and his senior staff and presentation of tutorial lectures
on Effects based operations. The second effort was carried out at the invitation of the
Joint Improvised Explosive Devices Defeat Organization (JIEDDO). We were asked to
use the Pythia tool, together with a data set provided by DoD, to explore the tools use for
developing courses of action that include both kinetic and non kinetic operations that take
place over a long period of time. This effort started at the end of the reporting period
covered by this report and continued under other sponsorship after that. The results of
this ongoing task have not been documented yet.

1.4 Conclusion

While substantial progress has been achieved in all tasks, the problem of developing
adaptive architectures that will enable the warfighters to conduct effects based operations
against non-traditional adversaries remains challenging. Some of the challenges have to
do with the nature of the threat, some with the environment, and some with the resources
that need to be applied. The research conducted under this contract has established some
foundations for further research and has led to the development of tools that address
specific aspects of the problem.
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SECTION 2

Effects Based Operations for Transnational Terrorist
Organizations: Assessing Alternative Courses of Action to Mitigate

Terrorist Threats

Larry K. Wentz and Lee W. Wagenhals

2.1 Introduction

Transnational terrorism is a multidimensional problem for which motivation is a key
enabler. Terrorists are inspired by many different motives, some rational but most not,
and they have goals. Some terrorists are rational thinkers and they carefully assess
whether they can induce enough anxiety to attain their goal without causing a backlash
that will destroy the cause and the terrorist themselves. Others may be motivated for
psychological reasons that are derived from personal dissatisfaction with their life or
accomplishments. Culture is another key motivator and in this regard, there is a tendency
for western societies to reject, as unbelievable, things such as vendettas, martyrdom and
self-destructive group behavior. Terrorism thrives in a sea of perceived injustice and
religion is probably the most volatile of culture identifiers.

Security is another important consideration that influences terrorist organizational
arrangements (cellular structures seem to dominate) and recruitment and training (tend to
be extremely security-sensitive activities). There is a strong incentive by the members of
the networks to keep their structure and operations secret and unobservable. As a result,
intelligence operations against these organizations and their leaders, members and
supporters are extremely complex and difficult. Terrorist communications are
multidimensional and include means such as email, Internet web sites, commercial
telecommunications, cellular, courier, radio/TV and other covert or non-traditional
means. They use the mass media to generate fear and panic in a free-minded public and
also exploit the global media and information highways to carry news of their violence
along with propaganda of the deeds. On the other hand, media coverage of terrorism by
the free world can be used to educate the public, temper public anxiety, and influence
actions to prevent and counter terrorist actions.

Transnational terrorist networks are hard to define in terms of geographical boundaries or
through their physical assets. What characterizes these networks is not so much their
system architecture but their operational architecture. Inactive nodes can come to life
temporarily to carry out an operation at some location and then may go inactive again or
self-destruct. Or, in some cases, a system node may augment itself with additional
physical assets to carry out an operation and then discard these assets or disengage from
them. At the operational level, the relationships that tie the network together, the
interconnections, can be a set of beliefs, a financial infrastructure and a communications
infrastructure. It is, therefore, dangerous to see them only as madmen bent on destruction.

System Architectures Lab 8 Aug-06



The terrorist are very much unlike the military forces modeled in force-on-force type
engagements where traditional attrition-based warfare focuses on destroying the system
architecture of the adversary and the relationship (mapping) between the operational and
system architecture is well known and well understood.

The terrorists deliberately avoid engaging enemy military forces in combat and do not
function in the open as armed units. For the terrorist network, the operational architecture
maps into numerous system architectures. Therefore, an important objective in
suppressing, if not destroying, transnational terrorism is to attack and destroy not their
system architecture but their operational architecture-the ability to conduct operational
activities in support of their goals.

For military opponents, a well defined mapping between the operational and system
architecture leads directly to concepts such as physical Centers of Gravity, prioritized
target lists and the like. But, when the adversary is characterized primarily by an
operational architecture that maps into many system architectures or to flexible system
architectures that can be easily reconfigured, there is a need to change the way they are
analyzed and modeled. The concept of effects based operations is well suited to
addressing this problem. Instead of focusing on the servicing of a well-defined a priori
target list, the focus is on the effects to be achieved. The target list still exists and
includes both hard and soft targets: from weapons systems, to C2 nodes, to leadership
nodes, to infrastructure nodes, to political, social, and economic nodes, to the contents of
communications, information, and databases. But, the target list is only an intermediate
construct, a means to an end that can change rapidly as effects on the adversary are
achieved or not. Indeed, the list of possible actions to be used against the adversary
centers of gravity (political, military, economic, social, information, and infrastructure)
includes all instruments of national (or coalition) power: diplomatic, information,
military, and economic. The availability of all instruments gives added flexibility in
trying to achieve the desired effects and to avoid undesirable ones. But, it also makes the
Course of Action (COA) problem and the subsequent planning problem much harder.
There are now many alternatives, many choices. The choice of a set of actions, their
sequencing, and their time phasing become problems in their own right.

Hence, effects based operations for transnational terrorism threat mitigation requires not
only a deep understanding of the terrorist motivation, methods, organization and other
factors but also needs an understanding of the friendly capabilities and infrastructure and
likely vulnerabilities that might be of interest to terrorist. Additional work needs to be
done to develop a more informed understanding of the appropriate relationships of
motivators, organization dynamics and capabilities of terrorists and courses of action.
There are a number of tools that address pieces of the problem but the current suite of
tools available in the community does not fully address an integrated approach to counter
terrorism course of action planning and assessment.
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During the George Mason University (GMU) support to the Joint Forces Command
sponsored Millennium Challenge 2002 experiment, an attempt was made to use the
GMU effects-based course of action planning and assessment research tool, called
CAESAR II/EB, to construct an influence net for developing and assessing courses of
action to deter a terrorist attack within the region of blue force operation for the
experiment. The results of this effort were used in support of follow-on GMU research
into developing influence networks to examine courses of action that might be considered
to deter an act of terrorism. Findings from literature searches and other research activities
have been used as an integral part of the research effort presented herein. Documents on
the Terrorism Research Center Internet web site (www.terrorism.com) and RAND
publications by Bruce Hoffman and Brian Jenkins were particularly helpful as were the
numerous other documents listed in the References. These information sources were used
extensively to develop the terrorism insights needed to build the case study model
presented herein. Based on principles set forth in the US "National Strategy for
Combating Terrorism," alternative high-level courses of action that brought to bear
elements of national power were developed and assessed using the case study model.
This paper explores some of the challenges of developing and assessing EBO courses of
action to mitigate terrorist threats and provides an example of a counter terrorism
influence net and some findings from an assessment of COAs aimed to prevent terrorist
actions. This is work in progress and much remains to be done.

2.2 CAESAR IW/EB, The Tool

The CAESAR II/EB tool was originally designed to support the analysis of an
adversary's actions and reactions to Blue's activities so that COA options could be
evaluated in a rigorous manner. It was inspired by the need to support the development of
Information Operations (10) influence planning and its integration with traditional
military operations. The tool incorporates influence nets as a probabilistic modeling
technique and a discrete event system modeling technique, Colored Petri Nets (CP net),
to support the temporal aspects of COA evaluation. These two techniques enable the
modeler to create the structure of actions, effects, beliefs and decisions and the
influencing relationships between them. The strength of the influencing relationships is
also captured. The influence net provides a static equilibrium probabilistic model that
indicates the probability of effects given sets of actions. A mapping has been established
and an algorithm has been encoded for automatically converting the influence net to a CP
net. After an influence net is converted to a CP Net, temporal analysis can be conducted
that provides the probability of effects over time given a timed sequence of actions. This
tool was designed to develop and assess COAs at the operational and strategic level.

The influence net provides an environment for modeling of the causal and influencing
relationships between actions by our forces (Blue) and effects on the adversary (Red). It
uses a graphical representation comprised of nodes that represent actions or effects and
causal or influencing relationships between the nodes. In addition to the network
structure of the model, estimates of the "strength" of the causal and influencing

2 Part of this work was supported by the Air Force Office of Scientific Research under grant No. F49620-

02-1- 0332
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relationships is added and enables an underlying probabilistic model base on Bayesian
mathematics to be used for analysis. The construct shown in Figure 1 is used. Starting
from the set of desired and undesirable effects that reflect the goals of the mission,
analysts work backwards to relate the effects to actions that are under our control. Once
the Influence net has been completed, it can be used to evaluate the impact of actions on
the effects (decisions) of interest using its underlying Bayesian mathematics.

Froml Red's Point of View

Set of Blue's Probabilistic
potential Model relating,\ Set of
actionable -*Actionsto Desired and
events that Effects through Undesirable
may Undesirable
influence the a netiwgork of Effects
set of effects influencing
on RED -W relationships

Figure 1. Modeling Actions and Effects

Once the analysis of the Influence net has been completed and the actionable events for
the COA have been selected, planners assess the availability of resources to carry out the
tasks that will result in the occurrence of the actionable events. The resultant plan will
indicate when each actionable event will occur. Clearly, it is not only the selection of the
set of actions that will lead to achieving the overall desired effects while not causing the
undesired ones that is important. The timing of those actions is critical to achieving the
desired outcomes. An algorithm has been implemented 3 that converts an influence net
into a discrete event dynamical system model. The particular mathematical model used is
that of CP Nets and their software implementation in Design/CPN 54. The nodes in the
Influence net become transitions in the CP Net and the places hold tokens that carry the
marginal probabilities. Since the Influence net does not contain temporal information, it
must be provided as an input to the CP Net.

Figure 2 shows the combination of models and results produced by the CAESAR II/EB
tool. An Influence net model for a given situation is shown in the upper left of Figure 2.
Each node represents an action, event, belief, or decision. A declarative sentence in the
form of a proposition is used to express the meaning of each node. The directed arcs

3 Wagenhals, L. W., Shin, I., and Levis, A. H. (1998). "Creating Executable Models of Influence Nets with
Coloured Petri Nets," Int. J. STTT, Springer-Verlag, Vol. 1998, No. 2, pp. 168-181.
4 Jensen K. (1997). Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Volumes 1,
2, and 3. Monographs in Theoretical Computer Science, Springer-Verlag, Berlin, Germany.
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between two nodes mean that there is an influencing or causal relation between those
nodes. The truth or falsity of the parent node can affect the truth or falsity of the child
node. The Influence net has been arranged with potential Blue actions on the left and the
key Red decisions on the right. This is to indicate visually that the effects of the actions
are expected to propagate to intermediate effects over time until their impact reaches the
key decisions. This captures the cascading and accumulation of effects. There are six
actionable events on the left side of the Influence net. These are candidate actions (or
results of actions) that can comprise a COA that can impact the three Red decisions of
interest.

Lead to - --

Blue Actions Red Decisions Probability Profiles

-DPW' " Value Tarrgets

Protected

L--j

. :Terrorist

-, o.~ jMotivated

" . In d ic a t o r ok...,* , T o A t ta c k

Influence Net

Time (Days)
EXECUTABLE MODEL

(ctons I
with times)

Figure 2. CAEAR II/EB Products

Once the analysis of the Influence net has been completed and the actionable events for
the COA have been selected, the Influence net is automatically converted to an
executable model (CP net) so that a temporal analysis of the COA can be performed.
Using the executable model, the analyst is able to generate the probability profiles that
show the marginal probability for any node in the net as a function of time. These profiles
can indicate how long it will take for the effects of the actionable events to affect various
nodes in the Influence net. The analyst will most likely concentrate on the probability
profiles of the key decision nodes, the nodes with no children. The probability profiles
shown in Figure 2 were generated for the COA proposed by the planners. The
annotations have been added to indicate the three separate probability profiles. Different
timing of the actions can alter the probability profiles. As a result, some will be more
desirable than others while others may be unacceptable, so the planners will try to adjust
the scheduling of actions.
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2.3 Terrorism Definitions

There are numerous definitions for terrorism. The U.S. National Security Strategy defines
terrorism as simply "premeditated, politically motivated violence against innocents." U.S.
government organizations and the UN define terrorism slightly differently.61 For example:

U.S. Department of Defense: The calculated use of violence or the threat of
violence to inculcate fear; intended to coerce or to intimidate governments or
societies in the pursuit of goals that are generally political, religious, or ideological.
U.S. Department of State: Premeditated, politically motivated violence perpetrated
against noncombatant targets by sub-national groups or clandestine agents, usually
intended to influence an audience.
U.S. Federal Bureau of Investigation: The unlawful use of force or violence
against persons or property to intimidate or coerce a government, the civilian
population, or any segment thereof, in furtherance of political or social objectives.
United Nations: A unique form of crime. Terrorist acts often contain elements of
warfare, politics and propaganda. For security reasons and due to the lack of
popular support, terrorist organizations are usually small, making detection and
infiltration difficult. Although the goals of terrorism are sometimes shared by wider
constituencies, their methods are generally abhorred.

The challenge of grasping the nature and parameters of the war on terrorism is certainly
not eased by the absence of a commonly accepted definition or by its depiction as a
Manichaean struggle between good and evil, "us" versus "them."6 Consensus on the
definition of terrorism is not necessary to conduct counter terrorism operations against
specific terrorist organizations but a lack of consensus can impede the study of the
phenomenon itself.

Counter terrorism is not war in the traditional sense of military operations between states
or between a state and an insurgent enemy for ultimate control of that state. Terrorist
organizations do not field military forces as such and are trans-state organizations that are
pursuing non-territorial ends. As such, and given their secretive, cellular, dispersed, and
decentralized "order of battle," they are not subject to conventional military destruction.

Based on findings from the research of literature on terrorism, what terrorism is and is not
can be summarized as follows:

* Terrorism is:

- Calculated use of covert criminal violence or threat of violence
- Deliberately selected as a tactic to effect change
- Targeting of innocent people, including military personnel
- The use of symbolic acts to attract media and reach a large audience

"5 "The Terrorist Recognition Handbook" by Malcolm Nance (2003)
6 Record, Jeffrey (2003). "Bounding the Global War on Terrorism," Army War College, Strategic Studies

Institute.
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- Illegitimate combat, even in war
- Never justified

• Terrorism is not:

- Common crimes
- Conducting acts legal under national and international law
- Civil disturbances or spontaneous rioting
- Freedom of speech or nonviolent civil disobedience
- Protests and assembly to present opposing views and express dissent

The following terms are used by U.S. organizations such as the Defense Department,
Intelligence Agencies and the Law Enforcement community to describe classes of
measures taken to address terrorist acts.

Antiterrorism: Defensive and preventive measures taken to reduce vulnerability to
terrorist attacks.

Counter-terrorism: Offensive measures taken in response to a terrorist attack,
after it occurs.

Combating terrorism: The U.S. government program against terrorism includes
antiterrorism, counter-terrorism, and all other aspects of tracking, defense, and
response to terrorism throughout the threat spectrum.

Force Protection: The U.S. DOD program for the defense of military and
government assets from terrorist and unconventional warfare attack--detect, deter,
and defend.

2.4 Terrorist Considerations

Numerous reports from the Terrorism Research Center Internet web site and books and
articles published on the subject of terrorism were used to develop the insights presented
herein. Of particular value were the following:

- Terrorism Research Center Internet web site
"o The Basics: Combating Terrorism, an essay from the U.S. Army Field Manual

100-20, Stability and Support Operations
"o Terrorist Intelligence Operations, reprint from the Interagency OPSEC Support

Staff, Intelligence Threat handbook

- Microsoft Encarta Online Encyclopedia 2003
o Terrorism by Bruce Hoffman

- RAND
"o "Countering al Qaeda" by Brian Jenkins
"o "Countering the New Terrorism" by Ian Lesser and et al
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o "Deterrence and Influence in Counter Terrorism" by Paul Davis and Brian
Jenkins

- Books
"a "Inside al Qaeda" by Rohan Gunaratna

"o "Inside Terrorism" by Bruce Hoffman
"o "Terrorism, War and the Press" by Nancy Palmer
"o "The Terrorist Recognition Handbook" by Malcolm Nance

"o "Framing Terrorism" by Norris Pippa and et al

Terrorists prefer simple strategies that appear sophisticated but are simple in planning and
execution. They seek dramatic and wide publication by media to transmit fear and
publicize their cause. Their apparent lack of logic enhances the terror in terrorism.
Terrorist acts are seemingly random and they feel their goal will be reached by
conducting enough attacks. They achieve their most dramatic impact through the use of
speed, surprise and violence of attack. The terrorist only needs to get lucky once but the
antiterrorist forces need to be lucky all of the time.

The goals of the terrorist organizations focus on recognition, coercion, extortion,
intimidation, provocation, and insurgency support for their cause. Their objectives are to
create a climate of fear in a targeted group or nation through a sustained campaign of
violence and to destroy the social and political order by attacking and destroying
commerce, property and infrastructure. They seek revenge for previous incidents or
situations affecting terrorist organizations or its causes and try to negatively affect
processes that the terrorist organization sees as against its interests. Attempts are made to
eliminate specific individuals or groups and to demonstrate the weakness of legitimate
governments. Terrorist organizations try to ensure governments overreact and oppress
their own people. They continuously try to gain new recruits, money or weapons. Some
terrorist organizations attack just to achieve the satisfaction of harming their enemy.
Attacks also serve to demonstrate that the terrorist group is still active.

Terrorist groups can be indigenous or transnational. They can be state-sponsored, state-
directed or have no state relationship. Those organizations that are state-sponsored tend
to operate independently but receive support such as weapons, training, money, and safe
havens. Those that are state-directed, act as agents of the state and receive intelligence,
logistics and operational support. The groups not sponsored act autonomously and
receive no significant support.

Motivation is a major consideration in terrorist organizations. Some are rational and think
through goals and objectives, conduct course of action planning and assessments and risk
and cost benefit analysis. They are careful when inducing anxiety to achieve their goals
to attempt to ensure that it does not cause a backlash that may destroy them or their
cause. Others are psychologically motivated and are dissatisfied with life and
accomplishments and crave violence to relieve anger. They tend to need to belong to a
group and require group acceptance, demand unanimity, are intolerant of dissent, and
have a polarized "we versus them" outlook. Culture is another key motivator. Western
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cultures are reluctant to appreciate the intense effect of culture on behavior. In their view
irrational behavior as a means to achieve objectives is counter culture. They believe
rational behavior guides human actions and reject the notions of vendettas, martyrdom,
self-destructive group behavior, and dissolution of a viable state for ethnic purity. For the
terrorists, fear of cultural extermination leads to violence - the perception that
"outsiders" are against them. Religion can be the most volatile of cultural identifiers -

the belief in moral certainty and divine sanctions.

Security is a primary concern of terrorist organizations. Although cell operations are the
least understood part of terrorism, it is believe terrorist organizations are best served by
cellular structures that operate in secret as small team. This way, members do not know
and cannot identify more than a few the other members. They can operate as a group on
orders of a commander or independently. Defections are rare and it's difficult to penetrate
cells. Fundamental units such as Command and Control, Tactical Operations,
Intelligence, and Logistics are employed. A highly trusted and experienced leader
generally runs the Intelligence cell and members of this cell rarely participate in attacks
- there is a need to protect identity of members. Terrorists tend to organize to function
in the environment where they plan to carry out their attacks - this is situation specific.
Numerous means are used to communicate. Direct means such as face-to-face, Internet,
cell phones and telephones can be used. Indirect means such as courier, trusted agent,
Internet, cell phones, telephones, mail, dead drops, newspapers, books, and
Radio/Television are used as well. Charismatic leaders are needed to unite the effort
otherwise behavior is a reflection of the group dynamics. The support structure is a mix
of state-sponsors and sympathizers. The recruitment process is highly security-sensitive.
Training of the terrorist organizations can vary from military style at sophisticated
facilities to inspirational talks before activation - motivating "throw away" operatives.

Terrorist potential targets generally fall into hard targets that are security conscious and
difficult to attack successfully and soft targets that are people, structures, or locations that
have less security and are open to public. Target selection is based on motive (ultimate
goal/objective), opportunity (feasibility) and means (covert capabilities). The targets they
choose can be categorized as follows: 7

" Strategic value: Long-term impact target sets that include executive leadership,
strategic reserves, cities, and national command centers.

• High payoff: Immediate impact target sets such as energy and economic centers.

"• High value: Contribute to degradation of societies ability to respond militarily or
sustain itself economically. Targets include military, law enforcement and
emergency response centers, Federal Government centers and critical commerce
personalities.

" Low value: Contribute to localized fear and harassment of society and target sets
include local transportation and non-critical infrastructure.

"7 Nance, Malcolm (2003). "The Terrorist Recognition Handbook," The Lyons Press, Gilford, Connecticut.
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" Tactical value: Degrade local law enforcement capabilities to respond and
includes target sets such as individual or small numbers of military or police, low
level civil, military and law enforcemelt leadership personnel and centers, and
military bases and equipment.

" Symbolic value: Heighten public fear and targets include innocent people,
national treasures and landmarks, prominent public structures, and national
representatives or diplomats.

" Ecological value: Damage natural resources of a society such as large bodies of
natural resources and wide areas of agricultural resources and industry.

The terrorist target selection will likely be driven by the ultimate goal of its leadership,
the feasibility of achieving success based on reports from the intelligence cells, and the
ability to covertly deploy necessary cells to carry out the act.

Terrorist attack profiles are driven by the time to develop and execute a plan and they can
use hard entry where they go in loud immediately with assaults using a range of weapons
or use a soft (stealth) entry where penetration is not known until the attack occurs. They
employ strategies that include misdirection (feints), deception (mask who or intent), and
large numbers of identical incidents over a period of time. Planning and execution times
can range from a few hours (hasty) to weeks (normal) to months and even years
(deliberate). The terrorist methods and tactics vary. They have already demonstrated the
use of hijackings, kidnappings, bombings, surface-to-air missiles, man portable air
defense systems, arson, assassinations, armed assaults, and barricade-hostage incidents to
attack critical infrastructure or capabilities, popular or high profile individuals, or
important facilities or symbols. Weapons of mass effects (e.g., human suicide/martyr
bombers, truck/car bombs, aviation attacks, maritime attacks, psychological, agriculture,
ecological, economic, cyber) have been used as well and there is concern that they may in
the future use weapons of mass destruction (e.g., chemical, biological, nuclear).

Initiation, escalation, de-escalation and termination of terrorist actions are determined by
the leadership intent, the group capabilities (resources and expertise) and opportunities
presented for attack. Terrorists have attacked both strategic and tactical targets worldwide
- the intent is to make their presence felt. Western governments' security services have
been reticent about sharing intelligence and judicial authorities rarely entertain request
for extradition that adds to the difficulties of fighting the war on terrorism. Another
important factor is the global media who are largely unaccountable to society and provide
an unsophisticated form of terrorist Intelligence Surveillance and Reconnaissance, e.g.,
through transmission of live images of terrorism related events and by talking head
analysis and special coverage assessments. Terrorists use symbolic acts to attract media
and reach a large audience. They exploit the media to gain public attention, publicize
their cause, and influence and spread fear. The media often make the mistake of seeking
deeper goals in a terrorist operation than the terrorist set for them. This makes the
terrorist appear powerful and untouchable. Media actions can also contribute to
amplifying fear-a terrorist objective.
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2.5 U.S. National Strategies

Following the terrorist attacks of September 11, 2001, the Bush administration developed
and published seven national strategies that relate, in part or in whole, to combating
terrorism and homeland security. These were:

"• The National Security Strategy of the United States ofAmerica, September 2002.
"• The National Strategy for Homeland Security, July 2002.
"• The National Strategy for Combating Terrorism, February 2003.
"• The National Strategy to Combat Weapons of Mass Destruction, December 2002.
"• The National Strategy for the Physical Protection of Critical Infrastructure and

Key Assets, February 2003.
"• The National Strategy to Secure Cyberspace, February 2003.
"• The 2002 National Money Laundering Strategy, July 2002.

The U.S. National Strategy for Combating Terrorism is mainly offensive oriented but
does include defensive homeland security objectives as well as objectives for protecting
U.S. citizens abroad.8 The principles of this strategy were used as a guide in the
development of the case study counter terrorism influence net, scenarios and courses of
action assessments discussed herein. The intent of the national strategy is to prevent,
spoil actions, deter, and respond; neutralize or destroy terrorist groups; prevent attacks
and minimize effects should one occur; weaken terrorist organizations and their political
power; and make potential targets more difficult to attack. The goals and objectives of the
4D strategy (Defeat, Deny, Diminish and Defend) include:

Defeat terrorists and their organizations
"* Attack sanctuaries, leadership, C3, logistics, and finances
"* Disrupt ability to plan and operate
"* Disperse and isolate terrorist
"* Coordinate and use regional partners to neutralize terrorists

Deny further sponsorship, support and sanctuaries to terrorists
"• End state sponsorship of terrorism
"• Ensure regional states accept responsibilities to take action
"• Interdict and disrupt material support for terrorist

Diminish the underlying conditions that terrorist seek to exploit
"• Enlist international community to focus on areas most at risk
"• Work with partners to keep combating terrorism
"• Win the war of ideas

Defend U.S. citizens and interest at home and abroad
"• Attain domain awareness
"* Protect the homeland and extend our defenses to insure we identify and

8 GAO-04-40ST. "Combating Terrorism: Evaluation of Selected Characteristics in National Strategies

Related to Terrorism," February 2004.
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neutralize the threat as early as possible

Success is dependent upon sustained, steadfast, and systematic application of all the
elements of national power-diplomatic, economic, information, financial, law
enforcement, intelligence, and military-simultaneously across all fronts.9

2.6 Terrorist Threat Considerations and Trends

The number of international terrorist attacks has declined but the level of violence and
lethality has increased.'0 Primary sources of terrorist organizations are organized groups
that have political, ethnic, and religious agendas; state sponsored organizations;
transnational groups with broader goals; and Islamic terrorist groups that have become a
growing threat. Al-Qaeda is gaining in global presence. These groups are loosely
organized; recruit membership from many different countries; and obtain support from
informal international networks. Terrorists have employed a wide variety of tactics to
attack American targets worldwide that range from violent demonstrations to kidnapping
to hostage taking to murder to armed attacks to bombings. Bombings are the most
common type of attack (67% of all attacks against Americans)." Terrorist attack
American businesses most frequently (more than 89% of the attacks) since businesses
tend to be less protected and soft targets. U.S. government, diplomatic and military
facilities tend to be protected and harder targets and less likely to be attacked. Terrorism
varies by region of the world but most attacks occur in Latin America (87%).12

The reduced international barriers of the post-cold war landscape provide opportunities to
exploit reduce political and economic barriers and facilitate movement of people, money,
information and material across international borders. The global business networks
facilitate international terrorism by providing safe havens for planning operations and
allowing the terrorists to take advantage of global banking, communications, and
transportation to carry out operations. Trafficking in narcotics, persons and weapons and
organized crime are key sources of finance for operations."3

Other aggravating factors included technology advances and weak international law
enforcement institutions. Information technology and communications facilitates global
reach and terrorists are becoming more sophisticated in use of computer and
telecommunications technology. Cell phones and Internet are used for planning,
coordination, and execution. There are serious vulnerabilities in our critical infrastructure
due to the reliance in information technology. The terrorists are adept at using technology
for counterintelligence. Weak law enforcement institutions due to ineffective police and
judicial systems in many foreign countries are a problem. Many of these institutions lack
resources. There are outdated laws in many countries and some foreign governments are
plagued by corruption. Law enforcement is constrained by national boundaries. Terrorists

9 "National Strategy for Combating Terrorism," February 2003.

l0 GAO-03-165, "Combating Terrorism: Interagency Framework and Agency Programs to Address the

Overseas Threat," May 2003.
"Ibid

I2 Ibid
I3 Ibid
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take advantage of institutional limitations and weaknesses to find and establish
sanctuaries.

Recent U.S. actions seem to have resulted in a decline in state-sponsorship of terrorism.
Threats of sanctions and retaliation have reduced willingness of nations to support
terrorist organizations. Terrorists have become less dependent on sponsorship by
sovereign states and a new phenomenon is emerging-terrorist sponsoring a state (e.g.,
Taliban in Afghanistan). Terrorist groups operating on their own in loosely affiliated
groups is on the increase as dependency on state sponsorship decreases. The terrorist
organizations recruit membership from many different countries and obtain support form
an informal network of like-minded extremists. There is a shift from aircraft hijacking
and hostage taking to indiscriminate terrorist attacks that yield maximum destruction,
casualties, and impact. This has generated a concern that there may be a shift to
unconventional weapons of mass effects or even mass destruction. Alliances with
transnational crime are providing the terrorist with access to various international crime
organizations to help finance their operations.

2.7 Counter Terrorism Actions

The key to defeating terrorists lies in the realms of intelligence and police work, with
military forces playing an important but nonetheless supporting role. Military destruction
of al-Qaeda training and planning bases in Afghanistan have been successes in the war on
terrorism but good intelligence-and luck-has formed the basis of virtually every other
U.S. success against al-Qaeda. 14 Intelligence-based arrests and assassinations, not military
divisions destroyed or ships sunk, are the cutting edge of successful counter terrorism
actions. The war on terrorism is analogous to the international war on drugs. An effective
strategy for counter terrorism needs to mobilize all elements of national power as well as
the services of many other countries. Hence, to suppress, if not destroy, transnational
terrorism it will be necessary to attack and destroy not their system architecture but their
operational architecture-their ability to conduct operational activities in support of their
goals.

There are numerous factors to consider as one builds a strategy for attacking the terrorist
operational architecture. It is of utmost important to know your enemy in terms of
motivation, his strengths and weaknesses, social networks of influence, sources of
financing, logistics and other support, recruiting process, means of communicating, and
organization structure and behavior. It is important to identify and locate terrorists and
terrorist organizations then destroy them and their organizations. This requires an
aggressive offensive strategy that aims to disrupt, dismantle, and destroy terrorist
capabilities to carry out their operational activities by attacking their sanctuaries,
leadership, C31, material support, and finances.

The strategy needs to employ diplomatic, military and law enforcement means to
eliminate sources of financing. As noted earlier, actions need to be taken to choke off the

14 Record, Jeffrey (2003). "Bounding the Global War on Terrorism," Army War College, Strategic Studies

Institute.
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lifeblood of terrorist groups by employing the full range national power to end the state
sponsorship of terrorism, to establish and maintain international accountability, to
strengthen and sustain international effort to fight terrorism, to interdict and disrupt
material support for terrorists, to eliminate terrorist sanctuaries, and eliminate conditions
that terrorist can exploit.

Major threats to U.S. and world order today come from weak, collapsed, or failed states.
Of concern is the fact that weak or absent government institutions in developing countries
form the thread that links terrorism and weapons of mass destruction. Before 9/11, the
U.S. viewed with less concern the chaos in far away places such as Afghanistan, but with
the intersection of terrorism and weapons of mass destruction, these areas have become
of major concern to the U.S. national security interests. Our tolerance for failed states has
been reduced by the global war on terrorism and necessitates that we not leave weak and
failed nations crumbling and ungoverned. Terrorists seek out such places to establish
training camps, recruit new members, and tap into a black market where all kinds of
weapons can be found for sale. 15 Courses of action to counter terrorism need strong
consideration of ways to help rebuild and strengthen weak states and to identify and
diminish conditions contributing to weak states by helping resolve poverty, deprivation,
social disenfranchisement, and unresolved political and regional disputes. Partnering with
the international community will be key. The strategy needs to win the war of ideas by
employing actions that de-legitimize terrorism, kindle the hopes and aspirations of
freedom, and support moderate and modern governments, especially in the Muslim world
and in this regard assure Muslims that American values are not at odds with Islam. It will
be necessary to reverse the spread of extremist ideology and to seek non-support, non-
tolerance, and active opposition to terrorism from the international community. Use of
effective, timely public diplomacy and government-supported media to promote the free
flow of information and ideas will be needed as well.

The best defense is a good offense. This means investment of political will and resources
to improve intelligence and warning and intelligence sharing among the military, law
enforcement and our international partners. It will be necessary to integrate information
sharing across the federal government and to effectively use intelligence, information and
data across all agencies. Continuous law enforcement, intelligence and military pursuit of
terrorists and their supporters will be necessary and needs to include a coordinated and
focused effort of federal, state and local government, the private sector, and the American
people. We will need to mobilize and organize to secure the homeland. In this regard,
protection of vital systems and infrastructure is a shared responsibility of the public and
private sectors. Plans need to be developed for alerting, containing and if necessary,
repelling attacks. Measures to ensure the integrity, reliability, and availability of critical
physical and information-based infrastructure at home and abroad need to be enhanced.

As noted earlier, intelligence is a key element of success in counter terrorism actions. The
safe house is one of the key nodes of a terrorist operation and if seized may compromise
cells, plans and materials. A safe house may be detected by informants, suspicious
neighbors or through surveillance. Logistic cells have a higher probably of detection

's The Atlantic Monthly article "Nation Building 101" by Francis Fukuyama
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because they often deal with low-level criminals and open market purchasing. Modem
terrorist have become creative in the use of advanced information technology to conduct
command and control of their operations making it difficult to detect activities. Terrorist
can use diverse methods to finance their operations that include sources such as
charitable organizations, organized crime, state sponsors, and legitimate business
investments. Terrorist activity detection opportunities include:

* Leadership behavior
* State sponsors and other supporters
* Political and religious influence networks
• Safe houses
• Supply chains
"* Logistics cells
"• Storage of supplies
"• Transportation and mobility
"• Command, control, communications and intelligence
"• Media relations and uses
"• Financing
"* Recruiting
"• Training camps

The challenge to the intelligence and law enforcement community becomes one of asset
management and focus and the ability to effectively share information and leverage the
resources of the military, law enforcement and international community. A measure of
success for a counter terrorism strategy will be diminished incidence and scope of
terrorist attacks. However, analytically, this is an unsatisfactory measure of success since
there is no way to prove a cause effect relationship. Additionally, a successful counter
terrorism strategy can have self-defeating unintended consequences such as the terrorists
changing their behavior and strategies that make them even harder to identify and
neutralize. The GMU tool, CAESAR II/EB, may be of help to understand possible cause
effect relationships of proposed courses of action and to identify potential unintended and
undesired consequences. Successful results in this regard are highly depended upon the
subject matter expert contributions and the creativity of the analyst constructing the
influence net and the assessing the courses of action-it's an art not a science.

2.8 Counter Terrorism Case Study

The purpose of the case study was to demonstrate the utility and examine the challenges
of using CAESAR II/EB to develop and assess EBO-based Courses of Action (COA) to
mitigate an attack by a terrorist field cell by employing a broad-based strategic level
attack profile that used both lethal and non-lethal means to disrupt and destroy the
operational and systems architectures of the terrorist organization. The strategies tested
employed the elements of National Power (Diplomatic, Information, Military, and
Economic) to attack the terrorist organizations centers of gravity (Political, Religious,
Military, Economic, Social, Infrastructure and Information). The study examined
reactive, proactive, preemptive, and preventative tactics and examined the role of
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intelligence, the media, and the use of non-lethal means, such as, 10, Political, Legal, and
International Collaboration. Homeland Security preparedness measures to defend high
value targets was addressed as well.

Building the Model

Extensive research of the literature on historical experience with terrorism and strategies
and frameworks for modeling counter terrorism actions was necessary in order to develop
the understanding needed to create influence nets that could be used to assess counter
terrorism courses of action and to examine the assessments for possible unintended
consequences of actions taken against the terrorists and their organizations. Two RAND
publications were of extreme value in the development of the case study influence net:
the Paul Davis book titled "Deterrence and Influence in Counter Terrorism" and the
Brian Jenkins book titled "Countering al-Qaeda." A Signal Magazine article from the
December 2001 issue by Dr Roger Smith, Titan Systems Corp., titled "Counter
Terrorism Modeling and Simulation: A New Type of Decision Support Tool" was useful
as well.

There are a number of interrelated challenges in constructing a counter terrorism
influence net. First, is being able to think in terms of how the individuals and
organizations to be modeled and attacked perceive they can be influenced and attacked-
view the situation from the terrorist perspective. Second, is identifying the actors and the
types and sequence of actions that can be taken to create the desired influence and
behavior change. Additionally, thinking about whether terrorists and their organizations
can be deterred, destroyed, or otherwise influenced requires a decomposition of the
terrorist operations and supporting systems into classes of influence to be attacked.1 6

Estimating the relative degree of impact of actions and events to influence outcomes
needed to be developed and this proved to be a challenge as well-open literature
documentation discusses the subject in qualitative terms.

The model for the case study was done at the strategic level and addressed broad-front
national level actions needed to achieve an outcome that deterred a terrorist field cell
from attacking. Past experiences using CAESAR II/EB to develop models in support of
Naval War College Global war games17 and Joint Forces Command experiment MC0218

demonstrated that it was difficult to model at the operational level and much more
difficult at the tactical level, and therefore, this effort focused on the strategic level.

The types of influence that needs to be considered can have both a positive and negative
impact on the desired effect or event and determining the appropriate balance of these
influences to achieve the desired effect is a challenge. It's largely a trial and error

16 Davis, Paul and Jenkins, Brian (2002). "Deterrence and Influence in Counter Terrorism," RAND.
17 Wagenhals, L. W. and Levis, A. H. (2002). "Modeling support of Effects Based Operations in War

Games," 7th Command and Control Research and Development Symposium, Naval Post Graduate School,
Monterey, CA, June 2002.
18 Wentz, L. K. and Wagenhals, L.W. (2003). "Effects Based Information Operations," 8th International

Command and Control Research and Technology symposium, National Defense University, Washington,
D.C., June 2003.
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experimentation process. For example, the higher the terrorist motivation and ability to
attack, the less effective deterrence is likely to be. On the other hand, if the terrorist target
of interest is well protected, the greater the deterrence. The influence net created for the
case study is depicted in Figure 3 and was used to assess courses of action that reduced
the probability that a terrorist field cell would attack.

The terrorist centers of gravity to be influenced and attack strategies ranged from using
soft means to attack the political, social, belief, and financial structures to hard kill
military means that disrupted or destroyed training facilities, logistics operations,
weapons caches, and C31 capabilities needed to conduct operations. Threats to things
terrorist care about, such as, loved ones, the terrorist cause itself, and the terrorist
personal power and possessions are important deterrence factors and were the target of
the 10 campaign to influence perceptions, legal actions to seize possessions, and military
and law enforcement actions to enforce messages in the 10 campaign-actions need to
support words. Other factors such as senior terrorist leadership support of terrorist cells
and cause, continuation of state sponsorship of terrorists, continued approval by
supporters of the terrorist and their cause, terrorist ability to conduct C3M of their
operation, and the ability of the terrorist to finance operations are enablers and as such
need to be attacked by an appropriate combination of all means available, especially the
non-lethal means where and when possible. Public fear and anxiety are terrorist enablers
that require careful attention and actions to keep the public informed and in this regard,
both the government actions and the media messages play an important role in informing
and influencing public understanding. Protection of high value targets is deterrence and
this requires proactive government (federal, state and local) attention to protection
policies, response plans and capabilities, and strategies and investments to protect critical
infrastructure and key leadership personnel. Industry also has a role to play in investing
in protection of facilities, capabilities, and key personnel. Awareness campaigns to
educate and inform the public and make the terrorist aware that antiterrorism investments
are being or have been made is important as well.

These considerations were built into the influence relationships and actions illustrated in
the influence net shown in Figure 3. The desired outcome of the courses of action
implemented is to drive the probability that a "terrorist field cell" will attack as low and
as quickly as possible without creating unintended consequences such as windows of
opportunity and vulnerabilities for the terrorist to attack. Key high level influence
elements in the upper right hand quadrant of the influence net shown in Figure 3 include
terrorist motivated to attack, finances available to conduct operations, recruiting and
training capability providing new terrorist, the terrorist C3M capabilities able to support
command and control of operations, logistics functioning and weapons available to
support an attack, sanctuaries available to attack from, and continued approval of
supporters such as political and religious leaders and other supporters of their cause
exists. The lower right hand quadrant addresses perceptions of uncertainty and risk in
terms of public fear and anxiety in response to terrorist threat warnings and terrorist
belief that government and industry made the antiterrorism investments needed to protect
high value targets (infrastructure-power, water, transportation-and leadership). The
upper left hand quadrant includes influence elements such as state sponsorship, terrorist
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leadership support and media reporting of terrorist threats and terrorist perception of
threats to things they care about.
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Figure 3. Counter Terrorism Influence Net

The left side of the influence net and lower right quadrant of the net show the different
domains of actionable events. There are hard kill actions aimed at destroying terrorist
targets that are largely military actions but law enforcement plays a role as well. The
Intelligence action is the means to identify and monitor targets of opportunity, to develop
social network understanding, to assess terrorist C2 tactics, procedures, and capabilities,
and to develop situation awareness and actionable intelligence and warning. International
cooperation is an enforcement enabler to provide an integrated global reach to leverage
the use of other nations to help attack terrorist elements in their geographic area, to
collect and share intelligence on terrorists, and to influence state sponsors and other
supporters of terrorism to stop. Legal and law enforcement actions use international and
national laws, law enforcement and judicial systems to disrupt terrorist organizations by
arresting leadership and other members, disrupting terrorist recruiting activities,
dismantling training camps, preventing cross border operations such as weapons
trafficking and movement of terrorists, and dismantling of the terrorist financial
networks. The political actions aim to gain international support to impose sanctions and
to influence state sponsors and nations providing sanctuaries and other support to terrorist
organizations and operations. The Information Operations actions focus on perception
management of regional and local political and religious leaders, influencing the beliefs
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of the terrorist leaders, state sponsors, and members of the terrorist organizations and
their supporters, and disruption of the recruiting of terrorists. An action referred to as
"Alternatives Offered" aims to provide hope and improvements in quality of life of those
suffering from poverty, deprivation and suppression of human rights who in turn support
the terrorist cause and are a source of terrorist recruits. The provision of hope and
improved the quality of life could serve to influence a large number of these people to
quit supporting the terrorists and their cause. The lower right quadrant addresses federal,
state and local government and industry actions (policies, contingency response plans,
command, control and intelligence capabilities, and investments in infrastructure and key
personnel protection) needed to implement antiterrorism measures to secure and protect
high value targets and to be able to more effectively respond to indications of possible
terrorist attacks.

The upper left hand quadrant has an action titled "terrorist event" and this was used as an
intelligence and warning (I&W) indicator that a major terrorist attack was about to
happen. Activation of this action served two purposes. First, its activation was used to
positively influence the terrorist leadership support and motivation of the members of
terrorist organizations and to influence the media response to generate radio and
television public awareness messages and "talking head" discussions of the possibility
and implications of an attack. The media response in turn had an additional positive
influence on the motivation of the terrorists and in publicizing their cause. It also had a
negative influence that contributed to the generation of public fear and anxiety.

A scenario-based approach was used to assess various courses of action so the second use
of I&W actions was a trigger to initiate various courses of action strategies to be tested-
reactive, proactive, preemptive, and preventative. In this role, the I&W action was used in
two modes, the action could be turned on for the entire assessment timeframe or it could
be turned on and off several times over the assessment timeframe to simulate multiple
occurrences of threat warnings coming and going. The former mode was used to assess
the impact of individual and various combinations of actions in response to the threat of a
terrorist attack. The latter mode was used to assess the relative effectiveness of
implementing course of action strategies that reacted to multiple warnings of terrorist
attacks.

Sample COA Assessments

A number of assessments of the relative impact of individual and multiple actionable
events on reducing the probability of attack and the sequencing and timing of these
events were conducted as part of the research. Several different scenarios were also
postulated based on the U.S. National Strategy for Combating Terrorism and used to
formulate courses of action tested and assessed. Two examples of scenario-based courses
of action assessments follow to illustrate the use of the tool and types of analysis
conducted. The first example examines a strategy that reacts to multiple terrorist threat
warnings and the second is a preemptive strategy in response to an initial threat warning
and aims to minimize the probability of an attack as quick as possible given there will be
a subsequent indication that an attack might occur. The two examples used different
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scenarios and sequencing and timing of the actionable events. The objective was not to
select the optimum strategy and course of action or to imply one strategy was better than
the other but to simply illustrate the use of the tool to conduct a comparison of these two
strategies based on the probability of a terrorist attack over time and to provide some
analysis of the relative effects of various courses of action.
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Figure 4. Reactive Strategy

The probability profiles in Figure 4 show the temporal analysis of terrorist leadership
support, terrorist motivation and terrorist field cell likelihood to attack. Three single
timeslot terrorist warning events occurred at times 1, 8 and 12 and these terrorist warning
events were used to trigger a scenario-driven predetermined reactive course of action.
The reaction strategy tested chose to use soft means first and then hard kill. 10 followed
by Political actions were initiated in reaction to the first terrorist threat warning event but
these actions alone were not significant enough to cause a major reduction in the
likelihood of a terrorist attack. The actionable events did serve to set some initial
conditions for deterring an attack by reducing terrorist leadership willingness to support
terrorist activities and there was some negative impact to terrorist motivation-largely
driven by the 10 campaign.

Legal and financial actions against the state sponsors and supporters and terrorist support
elements such as sanctuaries and the financial networks were initiated at time 6. These
actions combined with a short duration law enforcement action at time 6-7 against
terrorist leadership and support elements appeared to have an important temporary impact
on terrorist leadership, motivation and likelihood of attack. One might conclude that if
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the law enforcement action had continued (or its initial effects persisted) it would have
helped reduce the relative influence of the second terrorist event that occurred at time 8.
With the law enforcement action ending at time 7, it is suggested that a window of
opportunity (or vulnerability) opened between time 7 and the next terrorist threat warning
at time 8. As a result, the relative impact of the second threat warning was a more
significant influence in raising the probability of attack.

Following the second terrorist event, the scenario proposed actions by government and
industry to protect high value targets and this had a high payoff in reducing the probably
of a terrorist attack. These actions increased the risk to the terrorists if they attacked. In
this case, the scenario suggested that industry would respond quicker (loss of revenue
driven) to the threats than government bureaucracies and that the federal government
would be able to respond quicker than state and local governments and this drove the
sequencing of antiterrorism protection actions. Law enforcement actions were also
reactivated at time 11 to aggressively pursue terrorist leadership and support elements.

Although the third terrorist event increased terrorist motivation, the actions in place kept
the probably that the terrorist would attack low-leveraged terrorist belief that attacking
protected targets would be a high risk. Military action was initiated at time 14 to attack
terrorist leadership and to reduce the ability of terrorists to conduct operations. The
likelihood of a terrorist attack was further reduced when international cooperation and the
offering of alternatives to improve the quality of life of terrorist supporters took place.
These actions served to erode support for the terrorist cause and significantly reduced
terrorist motivation.

Embedded within the temporal analysis shown in Figure 4 are multiple actions related to
use of intelligence. The scenario assumed that there were limited intelligence assets
available to support the counter terrorism and antiterrorism actions and that the use of
these assets would therefore be driven by increased awareness that there was a need to
focus on terrorism related targets. It was assumed that at time 0 that a minimum level of
intelligence was being used (25%). Following the first terrorist event the use increased
(50%) at time 5 but then went back down (25%) at time 7 when no attack occurred.
Following the second terrorist warning event, the use was escalated (75%) and after the
third warning its usage went to the max (100%).

The analysis suggests that an effective antiterrorism protection campaign can have a
significant impact in reducing the likelihood of a terrorist attack but this alone is not
sufficient. Other means need to be employed to dismantle the terrorist operational
architecture-their ability to conduct operational activities in support of their goals. The
scenario for the second example employed a preemptive strategy in response to a terrorist
threat warning. In this case, proactive use of the elements of national power were brought
to bear early with an aggressive combined use 10, intelligence, political, military, legal,
financial and law enforcement actions to achieve an early deterrence in the probability of
attack by going after the leadership, state sponsors, reducing terrorist motivation and
disrupting their ability to conduct operations. The aggressive strategy was intended to
buy time to allow the bureaucratic process to take the actions necessary to initiate
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protection of high value targets and to engage the cooperation of the international
community that would in turn serve to reduce the likelihood of an attack by further
reductions in state sponsorship, terrorist supporters and support activities and the
elimination of sanctuaries.
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Figure 5. Preemptive Strategy

The probability profiles in Figure 4 show the temporal analysis of terrorist leadership
support, terrorist motivation and terrorist field cell likelihood to attack. There are two
terrorist warning events, one at time 1 and a second at time 8. The first terrorist warning
event triggered the response to aggressively attack. The resulting effect was to drive the
probability that the terrorist would attack below 50% and even with the second attack
warning the probably of attack did not rise above 50%. Initiation of international
cooperation at time 10 served to further reduce terrorist leadership willingness to support
terrorist attack actions and this influenced a reduction in terrorist motivation and
willingness to attack. As was the case in the first example, initiation of antiterrorism
protection actions caused a reduction in the likelihood of a terrorist attack and the
offering of alternatives to improve the quality of life of terrorist supporters served to
further reduce terrorist motivation. The results suggest that the aggressive attack strategy
was successful in achieving an early dismantling of the terrorist ability to conduct
operations and significantly reduced the leadership support and other support of terrorist
actions. Although the probability that the terrorist would attack was driven below 50%
before the second terrorist warning event, the results also suggest that an aggressive
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antiterrorism program is needed to compliment the aggressive counter terrorism program.
Both examples suggest that neither alone is sufficient.

The CAESAR II/EB tool has an ability to do a sensitivity analysis of the relative impacts
of individual and combinations of actions. A sensitivity analysis of the case study model
suggested that international cooperation and 1O were key actions that if used in
combination with other lethal and non-lethal actions could be a force multiplier and
important contributor to reducing the probably the terrorist cell would attack.
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Figure 6. Comparison of use of Lethal and Non-lethal Means

Figure 6 compares the use of lethal and non-lethal means in response to the belief a
terrorist event might occur. The probability profiles show the temporal analysis of state
sponsorship, terrorist motivation and terrorist field cell likelihood of attack. In both cases,
a terrorist warning event occurs at time 1 and at time 2 intelligence actions were initiated
in response to this warning. The comparison suggests that although the follow on military
and law enforcement actions reduced the willingness of state sponsors to support terrorist
activities, these actions alone were not sufficient to significantly impact the terrorist
willingness to attack. On the other hand, the use of non-lethal means such as 10,
political/diplomatic, international cooperation and legal/financial actions appeared to be
significantly more effective in terms of reducing state sponsorship willingness to support
the terrorist activities but here too these alone were not sufficient to significantly reduce
the probability the terrorist might attack. The follow on offering of alternatives to
improve the quality of life of terrorist supporters drove the terrorist motivation down and
the probability of attack below 50%. The antiterrorism protective actions served to
further reduce the likelihood of attack-increased risk to terrorist but not a de-motivation
of support of the cause. One might conclude from this assessment that non-lethal means
can be a significant contributor to reducing the probability that the terrorist might attack.
Comparing these results with the preemptive strategy illustrated in Figure 5 also suggests
that combining early military and law enforcement actions with non-lethal means such as

System Architectures Lab 30 Aug-06



10, political, international cooperation and legal actions provided a synergistic effect (i.e.,
non-lethal means can be force multipliers) that achieved an early dismantling of the
terrorist ability to conduct operations and reduced the willingness of the supporters to
continue their support of terrorist actions and hence, satisfied the end objective to
significantly reduce the probability that the terrorist would attack.

2.9 Observations

As noted earlier, creating influence nets and assessing courses of action is an art not a
science. As such, the experience of the model builder is key as well as availability of
subject matter experts to help guide the development of the models, the selection of
courses of action and subsequent assessments. In many cases, the subject matter experts
are not readily available and the modeler needs to do the research to prepare to develop
the influence nets and conduct the course of action planning and assessments. This was
the situation for the Counter Terrorism case study presented herein-a large part of the
effort was researching the subject area. Model building is also a timely and complex task.
In the authors' view, the current tools work best at the strategic level and to a limited
extent at the operational level. The pace of tactical operations coupled with the author's
experience using and observing the use of such tools in exercises and experiments
suggests that these tools can be cumbersome to use operationally and hence, limit their
value added in the high OPTEMPO environment of the tactical level of operation. 19

The value added of CAESAR II/EB was successfully demonstrated at the strategic level
when it was used to support the Naval War College Global Wargames and at the
operational level when it was used to support the Joint Task Force Information
Operations cell at the Millennium Challenge 2002 experiment at JFCOM. It must be
remembered, however, that tools, such as CAESAR II/EB, are research tools and not
ready for prime time operational use. Hence, the man-machine interfaces are not that user
friendly and visualization of the results have limitations-CAESAR Il/EB is cumbersome
to use and generates probability profiles as its visualization output. Results must also be
used carefully since this is just one means for trying to gain insights into effects actions
might have on achieving a desired outcome. It's a prediction with varying degrees of
uncertainty.

Challenges related to constructing influence nets are numerous. Understanding the
situation is key to identifying the effects to be modeled and to develop the causal
relationships and predict the truth or falsity of parent node effects on the child nodes.
Selections of actions and the timing of the sequencing of these actions require some
creativity on the part of the modeler as well. The process usually is to build a little and
test a little with lots of trial and error experimentation to refine the model and to develop
and select courses of action to be assessed. Models have limitations as well. For example,
for CAESAR II/EB, persistence or the continuation of the effect after the action is
removed is not modeled. Actions can be turned on and off several times over time but the

19 Wentz, L. K. and Wagenhals, L.W. (2003). "Effects Based Information Operations," 8th International
Command and Control Research and Technology symposium, National Defense University, Washington,
D.C., June 2003.
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persistence factor is not modeled. The model does not differentiate between the effects of
the sequencing of two actions (e.g., action A before B versus B before A gives same final
result although intermediate probabilities may be quite different) that in a real life
situation may not be the case. On the other hand, the insights and interchanges among the
decision makers, analysts and planners and synergy derived from the process of
developing models and assessing the courses of action is probably one of the most
important benefits to be realized from using a tool such as CAESAR II/EB.

The Counter Terrorism model developed using CAESAR II/EB and related courses of
action planning and assessments appear to provide useful insights into the effects of
lethal and non-lethal actions and their timing on desired deterrence outcomes as well as to
help identify unintended and undesirable consequences of actions taken. The analysis
presented herein suggests that counter terrorism and antiterrorism strategies need to
address both the operational and technical architectures of the terrorist operations and
organizations as well as one's own architectures. The experience has enabled the GMU
researchers to expand their repertoire of modeling types and techniques to provide
support to different classes of problems. CAESAR II/EB has limitations and work is in
progress at GMU to explore enhancements to the utility of the tool including
incorporation of modeling persistence and improving the user friendliness and
visualization of results in support of effects based COA planning and assessments.
Similar research and modeling efforts at the Air Force Rome Labs have already
addressed some of these short falls. Their Causal Analysis Tool has incorporated
modeling persistence and improved user interfaces and visualization and additional
research is addressing improvements to the operational utility of CAT to support effects
based air operations planning and assessments.
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SECTION 3

Transforming Timed Influence Nets into
Time Sliced Bayesian Networks

Sajjad Haider and Abbas K. Zaidi

3.1 Introduction

The easy access to domain-specific information and cost-effective availability of high
computational power have changed the way people think about complex decision
problems in almost all areas of application, ranging from financial markets to regional
and global politics. These decision problems often require modeling of informal,
uncertain, and unstructured domains in order for a decision maker to evaluate alternates
and available courses of actions. The past few years have witnessed an emergence of
several modeling and analysis formalisms that try to address this need. The modeling of
an uncertain domain using Probabilistic Belief Networks, or more commonly known as
Bayesian Networks (BNs), is considered to be the most used and popular of all such
formalisms. The BN approach requires a subject expert to model the parameters of the
domain E1 random variables [] as nodes in a network. The arcs (or directed edges) in the
network represent the direct dependency relationships between the random variables. The
arrows on the edges depict the direction of the dependencies. The strengths of these
dependencies are captured as conditional probabilities associated with the connected
nodes in a network. A complete BN model requires specification of all conditional
probabilities prior to its use. The number of conditional probabilities on a node in a BN
grows exponentially with the number of inputs to the node. The requirement of
specifying an exponentially large number of conditional probabilities presents a, at times
insurmountable, modeling challenge. Cheng et al. [1994] developed a formalism, at
George Mason University, called CAusal STrength (CAST) logic, as an intuitive, and
approximate language to elicit the large number of conditional probabilities from a small
set of user-defined parameters. The logic requires only a pair of parameter values for
each dependency relationship between any two random variables. The CAST logic is
used as a knowledge elicitation interface to an underlying BN. The approach was
subsequently named Influence Nets [Rosen and Smith, 1996]. The Influence Nets require
a system modeler (or subject expert) to specify the CAST logic parameters instead of the
probabilities. The required probabilities are internally generated by the CAST logic with
the help of user-defined parameters. The Influence Nets are, therefore, appropriate for
modeling situations in which it is difficult to fully specify all conditional probability
values and/or the estimates of conditional probabilities are subjective and estimates for
the conditional probabilities cannot be obtained from empirical data, e.g., when modeling
potential human reactions and beliefs.
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Both Bayesian Networks and Influence Nets are designed to capture static
interdependencies among variables in a system. A situation where the impact of a
variable takes some time to reach the affected variable(s) cannot be modeled by either of
the two approaches. In the last several years, efforts have been made to integrate the
notion of time and uncertainty. Wagenhals et al. [Wagenhals et al. 1998] have added a
special set of temporal constructs to the basic formalism of Influence Nets. The Influence
Nets with these additional temporal constructs are called Timed Influence Nets (TINs).
TINs have been experimentally used in the area of Effects Based Operations (EBOs) for
evaluating alternate courses of actions and their effectiveness to mission objectives. The
provision of time allows for the construction of alternate courses of actions as timed
sequences of actions or actionable events represented by nodes in a TIN [Wagenhals and
Levis, 2000; Wagenhals and Levis, 2001; Wagenhals et al., 2003].

The TIN approach inherits both the advantages and disadvantages of the Influence Net
formalism: it offers an intuitive, and compact, knowledge elicitation interface for
modeling purposes, but lacks some important analysis techniques. Currently, the analysis
suite of TINs lacks the ability to incorporate the real-time information/evidence coming
from different sources during the execution of a previously selected course of action. In a
military/political scenario, this new information might come from the surveillance system
regarding an adversary's actions. In an economic domain, a new development in a stock
market, e.g., bankruptcy filed by some corporation, might be taken into account before
making a strategic decision. In any case, this new information results in the revision of a
previously held belief about some variables in the system. Haider and Levis [Haider and
Levis, 2004] have recently proposed an algorithm to overcome this limitation; however,
the approach is applicable for a special class of evidences only.

On a parallel track, scholars in the BN community extended the BN formalism to
incorporate a special notion of time in it. The extension, called Time Sliced Bayesian
Networks (TSBN) or Dynamic Bayesian Networks [Murphy, 2002], has gained a
privileged status among the Artificial Intelligence community as a tool for modeling time
and uncertainty. The approach is based on unrolling a static BN on a discrete time line
with each time slice having an instance of a node in the network. The temporal
dependencies are modeled with the help of edges across these time slices. Several
sophisticated techniques for enhancing the capabilities of this approach have been
proposed [Hanks et al., 1995; Figueroa and Sucar, 1999; Santos and Young, 1999; Galan
and Diez, 2002]. Furthermore, several algorithms have also been proposed to compute
the marginal probabilities of the random variables in an efficient manner [Kjaerulff,
1992; Boyen and Koller, 1998; Doucet et al., 2000; Murphy and Weiss, 2001; and
Takikawa et al., 2002].

The lack of a comprehensive suite of analysis techniques in the TIN formalism and the
recent developments in the field of TSBN bring us to the topic of this paper: The paper is
an attempt to combine the advantages of both paradigms, TIN and TSBN, into a single
formalism by providing a mapping from a TIN to a TSBN. The proposed formalism uses
the TIN approach for the model building and the TSBN for analysis and evaluation. The
paper demonstrates that TINs provide a compact and an intuitive way of modeling
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dynamic domains. A system modeler, therefore, can specify the uncertainties and the
temporal constraints, present in a problem domain, in the form of a TIN. Once a TIN is
fully specified, it can be converted into a TSBN using the approach presented in this
paper. On one hand, the conversion simplifies the intractable task of knowledge
elicitation in TSBNs by suggesting the use of TINs as a front end tool; while on the other,
the conversion makes it possible to use a variety of analysis algorithms that have been
developed for TSBNs.

The rest of the paper is organized as follows: Section 2 provides a technical background
of Timed Influence Nets and Time Sliced Bayesian Networks. The algorithm for
transforming TIN into TSBN is described in Section 3 with the help of examples. Finally,
Section 4 discusses the conclusions and proposes directions for future research.

3.2. Technical Background

3.2.1 Bayesian Networks

Over the last two decades, Bayesian Networks, (BNs) have become a popular way of
modeling uncertainty in several fields of studies [Pearl, 1987; Charniak, 1991; Jensen,
2001; Neapolitan, 2003]. A BN is a Directed Acyclic Graph (DAG) G = (V, E). The
nodes or vertices (V) in the graph represent random variables while edges (E) connecting
5 pairs of variables represent probabilistic dependencies between them. Definitions 2.1-
2.3 present a formal description of BNs and the related terminology.

Definition 2.1 [Neapolitan, 2003]
Given a DAG G = (V, E) and nodes X and Y in V, Y is called a parent of X if there
is an edge from Y to X, Y is called a descendent of X and X is called ancestor of Y
if there is a path from X to Y, and Y is called a nondescendent of X if Y is not a
descendant of X.

Definition 2.2 [Neapolitan, 2003]
Suppose we have a joint probability distribution P of the random variables in some
set V and a DAG G = (V, E). We say that (G, P) satisfies the Markov Condition if
for each variable X E V, {X} is conditionally independent of the set of all its
nondescendent given the set of all its parents.

Definition 2.3
Let G = (V, E) be a DAG and P be the joint probability distribution of V. If(G, P)
satisfies the Markov Condition then B = (V, E, P) is called a Bayesian Network and
P can be written as

P(x .. . . ..x,) = P(xj, i pa(.¥))

where pa(x) represents the set of all parents of x and x e V.
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Figure 1: A Sample Bayesian Network

Figure 1 shows an example of a BN having four binary variables, namely, A, B, C, and
D. The text in the figure shows the prior and conditional probabilities associated with the
root and non-root nodes, respectively. The joint distribution of all the variables is
computed as the product of these probabilities.

For example, P (A, -B, C, D) is computed as
P (A,-'B, C, D) = P (D I -B, C) P (C I A, -B) P (A) P (-B)

The other values in the joint distribution can be computed in a similar fashion. Once the
computation of joint distribution is completed, it can be used to determine the marginal
probabilities of the variables of interest. Several algorithms have been developed for
various graphical structures of BN that compute the marginal probabilities in an efficient
way by propagating probabilities without first calculating all the joint distribution values.
The random variables in a BN could be either discrete or continuous. Binary random
variables are considered a special case of discrete random variables. The approach in this
sequel, assumes that all the variables in a BN have binary states. The presented approach
can be extended to more general cases.

3.2.2 Time Sliced Bayesian Networks

A TSBN works by discretizing time and creating instances of variables in a BN for each
point in the time interval under consideration. The process starts with the identification of
static cause and effect relationships among the variables and then by repeating the same
structure for multiple time slices. Links are drawn between variables having temporal
dependencies. Suppose, in the model of Figure 1, the probabilities of node A and B at
time t depend upon their probabilities at time t-1. Then, the probabilities of A and B at
time 1 are influenced by their respective probabilities at time 0; the probabilities at time 2
are influenced by the probabilities at time 1, and so on. These temporal dependencies can
be captured in a TSBN as shown in Figure 2.
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Figure 2: A Time Sliced Bayesian Network

Depending upon the situation, the state of a variable at time slice t may depend upon the
states of influencing variables in preceding time slices ranging from t-1 to 0, i.e., the
conditional probability of X at time t depends upon the set of influencing variable (the
parents of X) at time slices ({t-1 } or {t-1, t-2} or .... or {t-l,t-2 ..... ,t-k}). In this 7 context,
a TSBN can be seen as an order 'k' Markov Chain. Typically, the TSBNs are built as
order one Markov Chain, i.e., the future is conditionally independent of the past given the
present. One more assumption that simplifies the specification of a TSBN is that the
changes in the state of variables are caused by stationary processes. In other words, it is
assumed that the conditional probabilities do not change over time, i.e., P(xt I pa(xt)) =
P(xt-i I pa (xt-i)) t = 1, n In the sequel, a TSBN is assumed to have stationary
conditional probabilities and of order one Markov process, unless stated otherwise.

3.2.3 Timed Influence Nets

As mentioned earlier, Influence Nets simplify the intractable task of eliciting Conditional
Probability Tables (CPTs) from subject experts, especially when a node in the net has
many parents. They use CAST Logic as an interface for eliciting CPTs. The logic has its
origin in 'Noisy-OR' approach [Agosta, 1991; Drudzel and Henrion, 1993; Heckerman
and Breese, 1996]. The CAST logic not only simplifies the elicitation of CPTs, but it also
provides a mechanism to obtain information from various experts and then combine their
individual assessments in a mathematical manner. The exact details of the CAST logic
algorithm are beyond the scope of this paper. The interested reader should refer to Chang
et al. [1994] and Rosen and Smith [1996].

Timed Influence Nets extend the capabilities of Influence Nets by allowing the provision
of specifying several types of temporal information. These types can be broadly classified
into two categories. One is related to the delays present in a problem domain while the
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other is related to the actionable events. The delays present in the domain represent the
amount of time it takes for knowledge about a change, in the status of any variable, to be
propagated to the node that is affected by that change. In TINs, this phenomenon is
modeled by associating delays to arcs and nodes. The delay on an arc represents the
communication delay, while a delay on a node represents the information processing
delay. The second type of temporal information in TINs is associated with the actions
taken in a course of action. Wagenhals et al. [Wagenhals et al., 2003] have called this
type an input scenario. It describes the time at which the actions are taken and the
intervals during which these actions are maintained. Actions in this context refer to the
random variables that are modeled as root nodes in the corresponding TIN. In Bayesian
literature, these actions could correspond to having the evidence on the root nodes. It is
assumed that the actions occur instantaneously. Because of the dynamic nature of the
problem, it is possible that the state of an action is changed during a course of actions.
Thus, an action can be true during a particular time interval and false in another.
Furthermore, these actions can be repeated an arbitrary number of times. It should be
mentioned that causal strengths in TINs do not change over time. It is, therefore, assumed
that like TSBNs, the changes in the state of variable in TIN are caused by stationary
processes. The following items characterize a TIN:

1. A set of random variables that makes up the nodes of a TIN. All the variables in
the TIN have binary states.

2. A set of directed links that connect pairs of nodes.
3. Each link has associated with it a pair of CAST Logic parameters that shows the

causal strength of the link (usually denoted as g and h values).
4. Each non-root node has an associated CAST Logic parameter (denoted as

baseline probability), while a prior probability is associated with each root node.
5. Each link has a corresponding delay d (where d > 0) that represents the

communication delay.
6. Each node has a corresponding delay e (where e > 0) that represents the

information processing delay.
7. A pair (p, t) for each root node, where p is a list of real numbers representing

probability values. For each probability value, a corresponding time interval is
defined in t. In general, (p, t) is defined as

([Pl, P2,. , Pn], [[tl 1, t12], [t21, t22], ... - , [tnl, t.21]

where til < ti2 andtij > 0 Vi= 1,2,....,nandj= 1,2

Formally, a TIN is described by either one of the following definitions (Defs. 2.4a, b, c).

Definition 3.2.4a
A Timed Influence Net is a tuple (V, E, C, B, DE, D,, A) where
V: set of Nodes,
E: set of Edges,
C represents causal strengths: E -- { (h, g) such that -I < h, g < 1 },
B represents Baseline / Prior probability: V -> [0,1],
DE represents Delays on Edges: E ->N,
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Dv represents Delays on Nodes: V -- N, and
A (input scenario) represents the probabilities associated with the state of actions
and the time associated with them.

A: R -->{([pI, P2,..., P.], [[tl1 , t 12], [t21, t22], [t. 1, tn2]] ) such that Pi = [0, 1],
tij --.Z and til _< ti2, Vi = 1, 2, n and j = 1, 2 where R cV}

Definition 3.2.4a can be further simplified by reducing some of the elements in the tuple.
The elements C, B in the tuple are used to approximate conditional probabilities, which
in turn, are used to represent the joint distribution P of the random variables in V.

Definition 3.2.4b
Given a TIN (V, E, C, B, DE, Dv, A), the elements C, B can be replaced by P that
represents the joint distribution of the variables in V. The transformation is done
by CAST Logic.

TIN = (V, E, C, B, DE, Dv, A) -+ TIN = (V, E, P, DE, Dv, A)

The elements DE and Dv in the Definitions 3.2.4a and 3.2.4b represent the delays
associated with the edges and nodes, respectively. The delay associated with a node can
be remodeled by adding it to the delays on its incoming arcs and removing it from the
corresponding node. For example, consider the TIN shown in Figure 3 (a).

2I 4

1 2 3

(a) (b
Figure 3: Reassignment of Node Delays

The delays on the links between A-C and B-C are 2 and 1 time units, respectively. The
delay associated with the node C is 2 time units. Figure 3(b) shows the equivalent net
with the node delay transformed to the edge delays. This transformation yields the
following definition for TINs.

Definition 3.2.4c
Given a TIN = (V, E, P, DE, Dv, A), the elements DE and Dv can be mapped into
an equivalent D that represents the transformed delays associated with the edges
E in a TIN.

TIN = (V, E, P, DE, Dv, A) -->TIN = (V, E, P, D, A)
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3.2 Transformation from TINs to TSBNs

The existing algorithms for TINs propagate the influence of actions in the forward
direction only, i.e., the probabilities are propagated from source (input nodes) to sink (or
target nodes) through intermediate nodes. This presents an analysis and computational
limitation of TINs for situations where observations, regarding states of non-root nodes in
a TIN, arrive during the execution of a selected course of action. An approximation
algorithm [Haider and Levis, 2004) has been proposed for incorporating such
observations. The algorithm, however, puts certain restrictions on the timing of input
evidence, thus making it impractical for some cases. One way of overcoming this
limitation is to transform a TIN into a TSBN. The exact details of the transformation
algorithm are presented in this section.

3.3.1 The Algorithm

The transformation algorithm first determines the required number of time slices by
taking the maximum length of the paths that exist between the root nodes and the target
node. More slices are added later when a course of action is selected. The additional
slices are determined by looking at the largest time stamp associated with the actions in
the selected course of action. Later, the connections between the nodes are established
based on the time delays associated with the arcs that connect two nodes in the TIN. The
subsequent indices of a root node (representing actionable events) are also connected
except for the time when an action is taken. The exact algorithm is presented in Table 1.

3.3.2 Application of the Transformation Algorithm

This section illustrates the transformation algorithm with the help of an example. The
example model is shown in Figure 4. The TIN in the figure shows a hypothetical crisis
that arose on a piece of land, belonging to a peaceful country, but annexed by a hostile
country B. The objective of building this model is to explore the possibility of a peaceful
solution of the crisis, or, in other words, the objective is to determine the probability that
country B would agree to withdraw its forces based upon certain actions taken by the
international community. There are four nodes in the TIN, namely, A, B, C, and D. The
description of these nodes is shown in the figure. The text besides the links represents the
delays associated with them. For instance, the link between B and C has a delay of 1 time
unit while the link between C and D has a delay of 3 time units, and so on. The steps
involved in the transformation algorithm are shown in Figure 5.

Step 1: In this step, the maximum path length between the root nodes (A and B) and the
target node (D) is determined. The path A-C-D has the maximum length of 5.
Thus, M is set to 5.
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Table 1: The Transformation Algorithm

Given TIN = .(%', E, P, D, A)
1. Find the maximumn path length between the root nodes and target nodes. i-e.,

M = nmx[1P] where

Pi,: path between nodes i and j such that i. k G V and --13 (k. i) G E

2. Construct a TSBN (VI, El, P1) where
Vi: V v G V add vj to V1 where i = 0. 1 .... M

= {vjIvr V.i= = .. 1... M}
El = {(xi..,) i =iax (0. j -D(x. y)): x. Y ( V and i. j = 07 .. M., M)
Pi: P when indices are ignored
For example. P(,, I x,) = P(y I x) when x. y G V and x-. y A7 V1.

This step draws the nodes in the TSBN for M time slices. The connections are drawn
between the non-root nodes and their parents. The following step is required once an
input scenario is determined.

3. Let S = maximum time stamp associated with the root nodes as provided by the
input scenario:

(a) Add S additional time slices in the TSBN obtained in the previous step by
following the procedure outlined in Step 2.

(b) The resiultant network is the modified TSBN (Vi, El, P1) where
V1 = {v. I V.G V. i=0. 1 ...... M-S}
El = {(xi. yj) I i = max (0. j - D(x. y)), x, y G V and i, j = 0 1... M-S}
P1: P when indices are ignored

(c) Let RI = Set of Root Nodes where R1 c V1-. V r, - R1 connect rt_- to r, where
t = 1. 2 .... M-S. unless t is the time at which the variable is set to a state.

Step 2: This step draws the nodes in the TIN for M time slices in the corresponding
TSBN. The step is shown in Figure 5(a). After drawing the nodes for 5 time
slices, the connections between the nodes are drawn. The delays on the arcs in
the TIN determine the indices of the connected nodes in the corresponding
TSBN. For instance, the delay between B and D is 2. The connections between
instances of B and instances of D are determined as shown below:

D5 is connected to B3 as max (0, 5-2) = 3
D4 is connected to B2 as max (0, 4-2) = 2

DO is connected to BO as max (0, 0-2) = 0
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Similarly, the connections between instances of C and instances of D are
determined as follows:

D5 is connected to C2 as max (0, 5-3) = 2 M
DO is connected to CO as max (0, 0-3) = 0

The process is shown in Figures 5(b) and 5(c).

A B

2T1

C

3

S( f

D

Figure 4: A Simple Timed Influence Net

Step 3: Let the input scenario is given. This step adds additional nodes and links in the
TSBN based upon the selected course of actions provided as an input scenario.
Suppose in the input scenario, action A is taken at time 2 while action B is taken
at time 1. The maximum time stamp associated with the actionable nodes is 2,
therefore this step adds two more slices to the TSBN and connects the parents and
children as described in the previous step. Furthermore, the connections are added
between the nodes representing actionable events as explained in Step 3(c) of the
algorithm. For instance AO and Al are connected but since A is taken at time 2
therefore there is no connection between Al and A2. The connections, however,
are drawn between A2 and A3 and between A3 and A4, etc. Similarly, as B is 2 1
3 2 A D C B 12 taken at time 1 therefore connections are made between B 1 and B2,
B2 and B3, etc. while BO is not connected to BI. The final TSBN is shown in
Figure 5(d).

Once a TSBN is obtained from the corresponding TIN, the task of real time execution
monitoring can be accomplished by entering observations in the model that arrive during
the execution of the selected course of action. Suppose in the model of Figure 5(d), the
evidence regarding variable D is received. The evidence states that D happens to be true
at time 4. In the figure, all the indices of D equal to or greater than 4 are set to true. Thus
D4, D5, D6, and D7 in Figure 5(d) become the evidence nodes. This new information
revises the belief about the state of other non-actionable variables (non-root nodes) in the
problem domain. For instance, this information would change the initial belief about C at
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time 1, 2, and onwards. If the time associated with the new information is greater than the
number of slices drawn in the TSBN then more slices could be added to it. For example,
if the new information says that D occurs at time 9 then the system modeler can add few

S......... ................................ ........ ........ ........ ......... ........ ........ ........ ......... ........ ..................... .{.. .... ..... ..].n .t.:..,.........•.• ..... .(. . o i..... .... ... ......... ........ ........ .... ........ ................................. ................ ........ .................

00
( - -. - - \2-.• kC3) 7C4 '

S......... ................ ........ ......... ............... ........ ....... ......... .... ........... .. . ......... ....( .. ........ .q.. ................. .t.. ! .. . . ....[.!.t.k ...• .:........ .... ........... .... .................... ............................ ................ ................ ........

SIo I, I,-. C3 I 4 1 ,O

0 0 5j 6® 7
(d) : Cons metruc tion of L InkpAuosti S lcesal

Figure 5: Steps Involved During the Transformation Process
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more slices with the help of step 2 of the transformation algorithm in order to observe the
impact of this new information on C at time 6 and onwards. It can be noticed in Figure
5(d) that variables in the TIN only depend upon the previous states of their parents and do
not depend upon their own previous states. This is due to the fact that there is no link
from node Xt-i to node Xt, where X belongs to the set of non-root nodes. There can be
situations in which a variable's state at time t may depend upon its own state at a
previous time stamp. In TSBNs, this issue is addressed by adding a link between different
instances of the same variable at different time slices. The process is shown in Fig. 6
where the links in bold show the connection between (Ct-i, Ct) and (Dt-i, Dt). In TINs this
requirement can be modeled by adding self-loops to such nodes (Fig. 6). This self-loop
represents the dependency of the state of a variable at time t on its previous state.

Figure 6: TSBN of Figure 5(d) with Dependencies Among Instances of Non-root Nodes

2U

I..j -

I I

Figure 7: Timed Influence Net with Self-Loop

3.4 Conclusions

The paper presented a transformation algorithm for converting Timed Influence Nets into
Time Sliced Bayesian Networks. The transformation provides the equivalence that exists
between TINs and a class of TSBNs. Furthermore, the approach suggested in the paper
delivers the advantages of both modeling paradigms to a system modeler. On one hand, it
simplifies the knowledge elicitation process of TSBNs by suggesting TINs as a front end
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tool for modeling time and uncertainty; while on the other, it enhances the current
capabilities of the TINs by providing the modeler ability to enter evidence that arrives
during plan execution. In other words, the approach suggests that TINs be used for model
building and course of action selection process, and TSBNs for execution monitoring of
the selected course of actions. The task of inference in TSBNs, however, is
computationally intractable. Thus, there is a tradeoff between the available approximate
and exact algorithms in terms of accuracy and the time to compute probability of the
variable of interest. The future research would focus on determining a set of inference
algorithms (exact or approximate) that works better with the class of TSBNs that are
obtained from TINs as a result of the transformation.
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SECTION 4

An Approximation Technique for Belief Revision
in Timed Influence Nets

Sajjad Haider and Alexander H. Levis

4.1 Introduction

Probabilistic Belief Networks have gained popularity in last two decades to model
uncertainty [Charniak, 1991], [Jensen, 2001], [Neapolitan, 2003], and [Pearl, 1987].
Commonly referred to as Bayesian Networks (BN), these belief networks use a graph-
theoretic representation to explicitly show the dependencies among variables in a
particular domain. Formally BNs are Directed Acyclic Graphs (DAG) in which nodes
represent random variables while an edge connecting two nodes (typically) represents
causal relationship (though it is not required that the connection be causal) between the
two variables. The relationship between a node and its parents is defined by a Conditional
Probability Table (CPT) for all combination of parents' states. The joint distribution over
the random variables present in the network can be expressed as

P~•....... ,)=F P(.X- 1 pa (X4))

where pa(xi) represents a configuration of the set of parents of variable xi.

These networks have been primarily designed to simplify the intractable task of joint
probability distribution elicitation. They have been usually applied without considering
an explicit representation of time. In the past few years, efforts have been taken to
integrate the notion of time and uncertainty [Figueroa and Sucar, 1999], [Galan and Diez,
2002], [Hanks et al., 1995], [Kjaerulff, 1992], and [Santos and Young, 1999]. The
popular approach of modeling processes having temporal dependencies is to discretize
the time and create an instance of each random variable present for each point in time.
The process starts with eliciting the probability distributions for the static probabilistic
model. This model is repeated for difference time slices, and links are drawn between
these slices to represent the temporal dependencies among the nodes in the network. The
approach is usually referred to as Time Sliced Bayesian Networks (TSBNs) or Dynamic
Bayesian Networks (DBNs) [Murphy, 2002]. Figure 1 shows two types of TSBNs as
discussed by Hanks et al., [1995]. In Figure 1 on the left, all the connections in the
models are inter-slice, i.e., connections only exist among variables within different time
slices. On the contrary in Figure 1 on the right, the variables in the model have both inter-
slice and intra-slice connections.
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Figure 1: Examples of Time Sliced Probabilistic Networks

Despite the fact that probabilistic belief networks address the intractable problem of
eliciting joint distribution of random variables in an efficient way, the number of
parameters required to specify the Conditional Probability Table (CPT) of a node
increases exponentially with the number of parents. Several approaches have been
proposed that estimate the CPT values from parameters that are linear with the number of
parents. These include but not limited to Noisy-OR [Agosta, 1991], [Drudzel and
Henrion, 1993], and [Heckerman and Breese, 1996], CAusal STrength (CAST) Logic
[Chang et al., 1994] and [Rosen and Smith, 1996], etc. The probabilistic models that use
CAST Logic as an interface for estimating the CPTs for each node in the network are
referred to as Influence Nets. Influence Nets simplify knowledge elicitation by reducing
the number of parameters that must be provided. They are appropriate for modeling
situations in which the estimate of the conditional probability is subjective, e.g., when
modeling potential human reactions and beliefs, and when subject matter experts find it
difficult to fully specify all conditional probability values.

Timed Influence Nets (TINs) [Wagenhals and Levis, 1999], extend the CAST logic based
interface of Influence Nets by providing a way to model uncertainty and temporal
constrains present in a stochastic model from a Discrete Event System's (DES)
perspective. These TINs are developed by making cause and effect or influencing
relationships among variables in the domain. The links between two variables represents
the temporal causal relationship between them. The impact of one variable on other
variables does not necessarily occur instantaneously; rather it may occur after a specified
time. This time is represented by the assignment of a delay to each link. All the nodes in
the network could also have an optional time delay which represents the information
processing delay of the corresponding node. The marginal probability of a node is
computed whenever there is a change in the state (the marginal probability) of any of its
parents. To achieve this behavior in a computationally efficient manner, TINs propagate
probabilities using independence of parents assumption, also referred to as loopy belief
propagation [Murphy et al., 1999].

TINs have been used experimentally in the area of Effect Based Operations (EBO)
[Wagenhals et al., 2003]. They are modeled by identifying target variables and relating
them to the actions that could impact them. The purpose of creating such models is to
determine how to maximize or minimize the probability of occurrence of the target
variables by taking a timed sequence of actions or actionable events. Actionable events,
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in this context refer to the random variables that are modeled as root nodes in the
corresponding TIN. The actionable events (either under the control of the decision maker
or the adversary) and the variable of interest (target variable) are connected through
chains of variables that represent intermediate effects. Some of these variables may be
observable. This paper describes an extension to the capability of TINs by adding the
provision of incorporating new evidence in the model. The algorithm presented in the
paper provides an approximation scheme for updating the belief of the affected variables
after observing evidence provided that certain constraints are satisfied. The algorithm
first tries to reduce the net by identifying those variables which are relevant for
computing the posterior probability of a target variable over an interval of time. The
nodes, which do not have any impact on the variable of interest as a result of new
evidence, are considered as being pruned from the net. In the second step, the algorithm
computes the new beliefs on all the affected variables taking into account the time delays
(communication and processing delay) present in the graph. This technique provides an
initial step in the direction of integrating the impact of planned Course of Action (COA)
[Wagenhals and Levis, 2000] selected by the decision maker over a time interval and the
information/observations which arrive during / after the execution of that particular COA.
The objective is to assess impact of the actionable events as the situation dynamically
unfolds.

The rest of the section is organized as follows. Section 4.2 discusses the mathematical
formulation of TINs and their application. Section 4.3 describes the belief propagation
algorithm that supports the incorporation of evidence, while Section 4.4 concludes the
paper and points out areas for future research.

4.2 Modeling Uncertainty Using Timed Influence Nets

4.2.1 Knowledge Elicitation

TINs use CAST logic, a variant of Noisy-OR, to simplify knowledge elicitation from
subject matter experts. Instead of assigning conditional probabilities, the expert first
specifies the qualitative relationship between two connected nodes as either promoting or
inhibiting. Figure 2 shows a simple two node influence net. In Figure 2(a), the modeler
indicates that the presence of A can cause B (with some probability), and a '+' sign is
attached to the arc. Similarly, the modeler indicates that the absence of A can inhibit B,
therefore there is a '-' sign attached in Figure 2(b). Figure 2(c) shows the aggregated
qualitative relationship between two nodes by using the double (+, -) notation. If the
modeler had determined that the presence of A inhibits B while the absence of A
promotes B, then the aggregate notation would be (-, +). Qualitative relationships among
variables have also been applied for Qualitative Probabilistic Networks (QPN) [Drudzel
and Henrion, 1993] and Causal Maps [Nadkarni and Shenoy, 2001].

After (or during) assigning the qualitative relationships between the two nodes, the
expert(s) quantify these relationships by assigning values on the scale of 0 to 1. Low
values mean the promoting or inhibiting relationship is weak while values near 1 mean
the relationship is strong. The CAST logic uses a heuristic to convert theses qualitative
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relationships to form the conditional probability matrix for each non-root node. Besides
reducing the number of parameters required for specifying the conditional probability
matrix for each node, the CAST logic also helps in eliciting knowledge from different
subject matter experts. For instance, in an international conflict, there are many
dimensions of the problem, namely political, religious, ethnic, social, etc. It is difficult to
find domain experts having expertise in all the above areas. The CAST logic provides a
mechanism to obtain information from various experts and then combine their individual
assessment in a mathematical manner. The exact details of the CAST logic algorithm are
beyond the scope of this paper. The interested reader should refer to Chang et al., [1994]
and Rosen and Smith, [1996].

AW

(a)

(b)
S~~(+* -) -B[

Aw
(C)

Figure 2: Qualitative'Relationships in TIN

Timed Influence Nets extend the capabilities of Influence Nets by providing a mechanism
to specify certain kinds of temporal constraints present in a problem domain. Wagenhals
et al. [2003] have classified 4 types of temporal information that could be associated with
a Timed Influence Nets. Out of them, three are part of the model itself and one is related
to the input scenario. The input scenario can be described in terms of the actions in the
Course of Action (COA) and the time at which these actions occur. Among the remaining
three types of temporal information, one is related to the duration of an action. The
second type is related to the communication and processing delay present in a problem
domain. In other words, this type represents the amount of time it takes for knowledge
about a change in the status of any variable to be propagated by some real world
phenomenon to the node that is affected by that change. The third type of temporal
information is sometimes referred to as persistence. This is the time interval over which
an effect is manifested. Because of the complexity of this problem, the issue of modeling
persistence is still an area of active research. In the sequel, when we discuss TINs (a) (b)
(c) A B + -A B - A B (+, -) we mean Influence Nets that are capable of modeling the first
three types of temporal information (without persistence). The full specification of a
Timed Influence Net is as follows
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1. A set of random variables that makes up the nodes of a TIN. All the variables in
the TIN have binary states.

2. A set of directed links that connect pairs of nodes.
3. Each link has associated with it a pair of CAST Logic parameters that shows the

causal strength of the link (usually denoted as g and h values).
4. Each non-root node has an associated CAST Logic parameter (denoted as

baseline probability) while each root node has a prior probability.
5. Each link has a corresponding delay d (where d > 0) that represents the

communication delay.
6. Each node has a corresponding delay e (where e > 0) that represents the

information processing delay.
7. A pair (p, t) for each root node, where p is a list of real numbers representing

probability values. For each probability value, a corresponding time interval is
defined in t. In general, (p, t) is defined as

([Pi, P2,... , Pn], [[tll, t12], [t~l, t221, ... ,[tin, tU2]]

where tjI < tiE and tij > 0 Vi = 1, 2, n andj = 1, 2

The first four requirements in the above specifications are the same for static and timed
Influence Nets. The last three requirements are related specifically to TINs. Once a TIN
is completely specified, it can be used to observe the behavior of variables of interest
over a specific period of time.

4.2.2 Course of Action Analysis

Figure 3 [Wagenhals and Levis, 1999] shows how a TIN model compactly represents
actionable events, causal or influencing relationships between actions and effects, the
strengths of those relationships, and the time delays associated with effect propagation. It
illustrates the kind of analysis that could be done using TINs. The model shows the cause
and effect relationship as seen by an expert on international politics.

+~.

•b, t-,f -1, C.. .

Figure 3: A Simple Timed Influence Nets

System Architectures Lab 52 Aug-06



Country B has occupied portion of land of a neighboring country. The objective is to find
a peaceful solution of the problem, or, in other words, the objective is to determine the
probability that country B would agree to withdraw its forces. There are five variables in
the Influence Net represented by the five boxes. Each arc in the net has an annotation that
is a triple. The first two elements of the triple contain the influence strength of the
presence and absence of the parent node on the child node. The third entry is the time
delay required for the influence to reach from parent to child. The prior probabilities of
each root node are also shown in the figure.

The next stage is to set the time for execution of the actions represented as root nodes.
Suppose the actions are executed at the following times:

Diplomatic Mission in Country B @ 8
Int'l Community Threatens Sanctions @ 10
Country G Employs Successful Covert Mission @ 11

The influences of these actions reach the target node (Country B Agrees to Withdraw) at
different times. Every time an influence arrives at the target node, the TIN updates the
belief of target node. These belief updates and the time each one occurs are shown in the
form of a probability profile (Figure 4).

4.3 Belief Propagation Algorithm

TINs were originally designed for the COA analysis. In the original TIN formulation it
was assumed that all the actions are in fact evidence nodes and there would be no
evidence on the other nodes in the networks. Thus, these TINs lacked the ability to
incorporate the information/evidence coming from different sources during the execution
of a COA. In a military/political scenario, this new information might come from the
surveillance system observing an adversary's actions. In an economic domain, a new
development in the market, e.g., bankruptcy filed by some corporation, might be taken
into account before making a strategic decision. In any case, this new information results
in the revision of a previously held belief about some variables in the domain. This
section, which is the main theme of this paper, extends the ability of the original TINs by
presenting an approach for integrating the new information with the existing beliefs on
other variables in the net. The algorithm takes advantage of the fact that while analyzing
a TIN, the analyst is primarily interested in observing the behavior of the desired
objectives. This feature helps in applying graph reduction techniques and simplifies the
belief revision process. Instead of revising the beliefs on all the variables in the net, the
belief revision process is applied to only those set of variables which impact the variable
of interest in some way. The algorithm is based on the constraint that the marginal
probability of a parent node will not be updated unless all of its children which need to
be updated have updated marginal probabilities.
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Figure 4: Probability Profile for Node "Country B Agrees to Withdraw"

The algorithm has three main steps. The first step determines the sequence in which the
marginal probability of nodes will be updated once evidence has been incorporated in one
of the nodes of the model. Step two selects only the nodes in the sequence that are needed
to update the target node. In Step 3, the updating is accomplished node by node in the
sequence determined in Step one. The following sub sections describe the working of the
algorithm in detail.

4.3.1 Sequencing of Nodes

The algorithm that determines the sequence for updating the nodes in the TIN is
presented in Table 1. It creates a sequenced list of all of the ancestors of a node to which
evidence is applied. The sequence is based on a breadth first protocol that ensures the
closest ancestors are placed on the list before more distant ancestors. This sequence
shows the order of the belief updating of nodes in the net. The node for which we have
obtained hard evidence is assigned sequence number one. The parents of the node are
sequenced then, and the process continues until all root nodes that have a path to the
evidence node are reached. We call this process backward sequencing. The resultant
sequence is then used to update the probabilities of nodes during backward propagation.
It should be noted that after reaching a root node, the belief updating process continues in
the forward direction and the nodes, which were not updated during the backward
direction, are then updated until the algorithm reaches the target node. The example TIN
in Figure 5(a) is used to explain the sequencing algorithm. Only the structure of the TIN
and the time delays are shown in the figure for clarity.

Suppose evidence about node 'H' in Figure 5(a) is obtained. In the first step, the
algorithm initialized the NodeList with 'H'. In the second step, the variable
'CurrentNode' is assigned the first unprocessed node in 'NodeList', which in this case is
'H'. Since 'H' is the evidence node, the parents of the 'H' are entered in the list, and 'H'
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is considered to be a processed node. At the end of the first iteration of step 2, 'NodeList'
has value [H, I, F].

Table 1: Algorithm for Sequencing of Nodes

Let X be the evidence node.
1) NodeList = [X]
2) 1WhIiile NodeList has tuprocessed nodes

CurrentNode = 1 Unprocessed node in thle
NodeLiqt

If there exists de'scen&d'it of C(:-rentNode
unprocessed in the NodeList then

Move C'UrrentNode at the end of the NodeList
Els e

Add parents of CurrentNode in the NodeList
Mark Current_Node as processed

End Loop

Nodes T and 'F' are unprocessed. The sequence of choice of parents of 'H' is arbitrary, so
'NodeList' could have the value [H, F, I]. In the next iteration, 'I' becomes the
CurrentNode. None of the descendants of '1', are in the list of unprocessed nodes, so the
parent of '1' (node 'D') is added to in the 'NodeList'. At the end of this iteration
'NodeList' has the value [H, I, F, D]. The next unprocessed variable in the list is 'F' and
since the descendants of 'F' have already been processed in the list, the parents of 'F' are
included in the list. The 'NodeList' now has value [H, I, F, D, G, B]. Next 'D' is assigned
to CurrentNode but one of the descendants of 'D', i.e., 'G', is still in the list
unprocessed. Thus 'D' is moved to the end of the list. The new value of 'NodeList' is [H,
I, F, G, B, D]. This time node 'G' is the Current node and the only child of 'G' has
already been included in the list, therefore parents of 'G' are also included in the list,
making the value of NodeList be [H, I, F, G, B, D, E]. In this way, the algorithm keeps
iterating, until all the nodes in the NodeList are processed. The final value of NodeList is
[H, I, F, G, E, D, C, B, A, M]. In general, there can be more than one possible sequence,
however, all sequences will produce the same results as far as belief updating is
concerned.

4.3.2 Graph Reduction

The steps described in the previous sections give the node ordering that would be used
while updating the nodes in the backward direction. But not all of the nodes are required,
if the objective is to only see the impact of the evidence on the target node. Considering
the same example used in the previous section, nodes 'A' and 'M' represent the actions
taken by the decision maker(s). If the evidence is received after the execution of these
actions and the objective is to analyze the behavior of node 'K', then there is no need to
update nodes G, E, D, and C. All we need to do is to update I, F, and B in the backward
propagation and then update the descendants of these variables during forward
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propagation. The process is referred as graph pruning. The resulting TIN is shown in
Figure 5(b). The sequencing and pruning algorithms can be used when evidence is
available for more than one node. When evidence is available at two or more nodes then
the sequence and pruning algorithms are run multiple times. For example, if there is
evidence for nodes H and L, then only nodes I and J need to be updated in order to see
the effect of the evidence of both nodes on node 'K'. The remaining nodes do not need to
be updated, as they could not impact 'K' through some other paths.

4

121 3

i'F'
4

F4

20

211 -.D

(b)

Figure 5(a): TIN for Explaining the Sequencing of Nodes Algorithm
Figure 5(b): TIN after Pruning

4.3.3 Computation of Posterior Probability

Once the sequence is obtained, the iterative application of Bayes' rule is used for
computing the posterior distribution of the affected variables in the net. In our example,
suppose the decision maker has taken actions 'M' and 'A' at time 6 and 8, respectively.
The conditional probability tables associated with each non-root node are not shown in
the figure to enhance the readability of the figure. The reader should be able to trace the
flow of information as the actions take place. For instance, node 'B' would be updated at
time 7 and 9. Similarly, node 'D' would be updated at times 11 and 13. The times of
update for other nodes could be computed in the similar manner. Once we finish the
update in the forward direction, the findings could be entered in the system. Suppose we
get evidence about the presence of 'H' at time 24. Mathematically, P'(H) = 1.0 @ 24,
where the notation P'(H) means that this is an updated marginal probability. Before
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getting this evidence, the marginal probabilities and their times of update for node 'H'
and its parents 'F' and 'I' are as follows:

P (H) = 0.44 @ 23
P (F) =0.21@ 21
P (I) =0.12 @ 15

After updating node 'H' at time 24, the belief updating process selects the next element in
'NodeList' which is 'I' in our example. The time delay on the arc between 'H' and 'I' is
1. Hence the probability of 'I' at time 23 should be revised. The probability is computed
as

P'(I) = P(I I H) P'(H) + P(I I -H) P'(-H) (1)

where P(I I H) and P(I I -H) are computed using Bayes' rule. P'(H) and P'(-H) represent

the new probability of H and -H as a result of the new evidence.

P(I H) = P(H, I) / P(H) (2)

P(I -H) = P(-H, I) / P(-H) (3)

The numerator of Eq. (2) can be expanded as

P(H, I) = P(H, I, F) + P(H, I, -F) = P(H I I, F) P(I, F) + P(H I I, -F) P(I, -F) (4)

As discussed earlier, TINs assume that both parents of 'H', i.e., 'I' and 'F', are
independent, which results in the simplification of equation (4),

P(H, I) = P(H I I,F) P(I) P(F) + P(H I I,-F) P(I) P(-F) (5)

Suppose the Conditional Probability Matrix for node 'H' is given as

P(H II, F) = 0.15 P(H I, -F) = 0.98

P(H I -I, F) = 0.005 P(H I-I, -F) = 0.5

Using these conditional probabilities, equation (5) becomes
P(H,I)= (0.15)(0.12)(0.21)+(0.98)(0.12)(0.79)= 0.097

The numerator of equation (3) can be computed in a similar manner

P(-H,I)= (0.85)(0.12)(0.21)+(0.02)(0.12)(0.79)=0.023

From the above two equations, we can compute equations (2) and (3)

P(I I H) = 0.097 / 0.44 = 0.22

P(I I-H) = 0.023 / 0.56 = 0.04
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Equation (1) thus becomes:

P'(I) = (0.22)(1.0) + (0.04)(0) = 0.22

The probability of F is updated in a similar manner at time 22, as the time delay on the
arc between 'F' and 'H' is 2. After these updates, the probabilities of H, F, and I become:

P'(H)= 1.0 @ 24

P'(F) = 0.01 @ 22

P'(I) = 0.22 @ 23

The next node in the 'NodeList' is 'B'. The time delay between 'F' and 'B' is 4. Hence
the probability of B is revised at time 18. It has been discussed earlier that there is no
need to update the probability of nodes 'G', 'E', 'D', and 'C' if the only objective is to
observe the impact of evidence on the target node 'K'. But in order to show how the
constraint of not updating the parent unless all the children are being updated works, we
could continue the process of backward propagation till we reach node 'D'. The impact
of evidence arrives at 'D' through both of its children, 'I' and 'E' at time 21 and 14,
respectively. If we update 'D' at 21 based on the new probability of 'I' at time 23 then
the probability of 'E' will also be updated at 23 during forward propagation. Further, the
probability of 'F' would be updated at time 29. Since the child of 'F', i.e., 'H' is already
an evidence node, the new probability at 'F' results in the update of the other parent of
'H', namely 'I' at time 30. Thus, as a result of updating the probability of 'D' based on
the new value of 'I' we have obtained a new probability of 'I'. This cycle of update
would continue forever. In order to avoid falling into the problem of infinite loop which
would result if we consider the impacts of 'I' and 'E' on node 'D' individually, the
earliest time will be used for the update. Hence node 'D' will be updated at time 14. In
general, if the impact of evidence reaches node Y through multiple paths then the update
time is computed as

tY. = niin(t -. -- tr - 1.,:i ........ - - C/

where X1, X2 ........ XN represent the children of Y that are already updated.
CxLyx, c( yx2........, c'xy, represent the time delay on the links between Y and its children
X1, X2 ...... XN, respectively while tx,, tx2 . , tXN represent the time of update of
X1, X2 ...... XN, respectively.
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Figure 6: Probability Profiles of Nodes 'H' and 'K' After Evidence on 'H'

Once the backward propagation is finished, the algorithm starts in the forward direction.
The probability of node 'L' is updated at time 21 (the time of last update of B plus the
time delay on the arc between 'B' and 'L'). The impact of evidence on node 'J' arrives
through two paths: H-I-J, and H-J. The last update of I occurred at time 23 and the arc
delay has value 3. Hence there is a change in the marginal probability of 'J' at time 26.
The impact of evidence at 'H' reaches 'J', through the direct path between 'H' and 'J', in
3 time units. Thus, there is another update at time 27 (time of evidence plus delay on arc
from H to J). The changes in the marginal probabilities of the parents of the target node
'K' would result in the computation of new beliefs in node 'K' at time 23, 27, and 28.
These changes are shown in the probability profile of Figure 6. The figure shows that
incorporating the evidence about node H at time 24 changes the probability of node K
from 0.57 to 0.70 at time 28. This example assumes that the time delays are associated
only with the arc. The same technique can be applied for computing the posterior
probability if the time delays are associated with both nodes and arcs.

The ability to enter evidence in the model allows the possibility to compute the value of
information. In the planning domain, the decision makers are confronted with the task of
the placement of evidence gathering resources that may be limited in number. Having the
ability of finding the impact of certain evidence on the desired objective, the planners
would be in a better position to decide how to use these scarce resources based on the
contribution each evidence node makes in reducing the uncertainty in the objective node.

4.4 Conclusions

This section presented a computationally efficient technique for belief updating in Timed
Influence Nets. The proposed technique updates the nodes in the sequential manner using
the constraint that all the children of a node affected by the new evidence will be updated
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first before updating the belief in that particular parent node. The algorithm also takes
advantage of the fact that in TINs, the focus is on observing the behavior of few nodes in
the network. Hence there is no need to update all the nodes of the network. The nodes
that receive impact of evidence and have a path to the target nodes only need to be
updated. This relaxation helps in applying graph reduction techniques on TINs.

One of the possible limitations of the approach is that the algorithm works only if the
time stamp of the evidence is later than the time stamp of the last update of the evidence
node caused by the forward propagation of the effects from all of the action nodes. This
constraint might be very strong in some cases. It is quite possible that the evidence could
be observed earlier than expected by the model. There are few possible approaches to
relax this constraint. Either the expert should revise the communication and processing
delays in the network, or the portion of the graph which is in conflict with this new
evidence should be pruned before starting the backward propagation. The other
alternative is to convert the Timed Influence Nets into a Time Sliced Bayesian Network
(TSBN) and use a vast variety of algorithm available for TSBN. The transformation from
TINs to TSBNs is addressed in a future paper. It should be mentioned, though, that the
problem of inference in TSBNs (or even in static Bayesian Networks) is computationally
intractable. Thus, there is a trade off between the use of approximate algorithms and the
exact algorithms in terms of accuracy and the time to compute the posterior probability of
the variable of interest. An efficient algorithm for belief updating in TSBNs is still an
area of active research.
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SECTION 5

Dynamic Influence Nets: An Extension of Timed Influence
Nets for Modeling Dynamic Uncertain Situation

Sajjad Haider and Alexander H. Levis

5.1 Introduction

Decision making in uncertain complex situations has always been a very difficult task.
Access to a large amount of information has further magnified the complexity of this
problem. For an organization, it has become an unmanageable task to analyze enormous
amounts of information in a timely manner. Several efforts have been made to model this
problem using the framework of probabilistic reasoning and inferencing, commonly
referred to as Bayesian Networks [Pearl, 1987]. Timed Influence Nets (TINs), one of the
instances of this framework, have been used experimentally in the area of Effects-Based
Operations (EBOs). [Wagenhals and Levis, 2002;Wagenhals et al., 2003;Wagenhals and
Wentz, 2003] A TIN models the uncertainties and temporal constraints present in a
stochastic domain from a Discrete Event System (DES) perspective. The purpose of
building a TIN is to form a coherent model of the situation at hand by combining the
knowledge of several subject matter experts. The resultant model is then used as an aid to
decision makers to help them reach a final decision in a rational manner.

Despite their acceptance as a modeling tool, the assumptions made by TINs limit the
capabilities of a system modeler in terms of expressing real world situations. For
instance, TINs do not model the impact of the sequence in which actions are taken. Thus,
no matter what the sequence of the actions is, the final probability of achieving the
desired effect(s) remains same. This behavior is because of the underlying assumption in
TINs that events are memoryless, i.e. the probability of occurrence of an event at a
particular time instant does not depend upon its own probabilities of occurrence during
the previous time instants. As a consequence, the probability of an event depends only
upon the actions executed so far and not on the sequence in which these actions are
executed. This paper is an attempt to overcome this limitation of TIN.

Moreover, the assumption made by TINs that the influence of a cause remains the same
once the cause has occurred is found to be unrealistic. In reality, events happen and they
influence other relevant events. In many cases, the intensity of their influences decays
over time. Thus, an event having a very strong influence at the time of its occurrence on
another event might have an insignificant influence after a certain period of time. For
example, a resolution passed by the United Nations has a very strong impact on the
concerned parties at the time of its approval. As the days pass, the resolution starts
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loosing its affect and after a couple of months it completely looses its importance unless
the problem is solved or it is backed up by another resolution on the same subject. That
is, the influence of an event is time-varying. Currently, TIN lacks the ability to model
such cases. It assumes that the causal strength of the influences does not change over
time. This paper extends the capabilities of TIN by proposing a way for modeling time-
varying influences.

The rest of the paper is organized as follows. Sections 2 and 3 describe Influence Nets
and Timed Influence Nets, respectively. Sections 4 and 5 describe the limitations of TINs
and the proposed enhancement. Finally, Section 6 concludes the paper and points towards
the future research direction.

5.2 Influence Nets

Influence Nets (INs), an instance of the Bayesian framework, were proposed a decade
ago to overcome the intractability issues present in BNs. They employ an approximation
inference algorithm, termed as loopy belief propagation [Kschischang and Frey,
1998;McEliece et al., 1998;Murphy et al., 1999], and non-probabilistic knowledge
acquisition interface, termed as the CAST logic [Chang et al., 1994;Rosen and Smith,
1996].

The modeling of the causal relationships using an IN is accomplished by connecting a set
of actionable events and a set of desired effects through chains of cause and effect
relationships. The strength of such relationships is specified using the CAST logic
parameters (a brief overview of the logic is presented later in this section) instead of the
probabilities. The required probabilities are internally generated by the CAST logic with
the help of user-defined parameters. The Influence Nets are therefore appropriate for the
following situations: i) for modeling situations in which it is difficult to fully specify all
conditional probability values ii) and/or the estimates of conditional probabilities are
subjective, and iii) estimates for the conditional probabilities cannot be obtained from
empirical data, e.g., when modeling potential human reactions and beliefs.

The actionable events in an IN are drawn as root nodes (nodes without incoming edges).
A desired effect, or an objective the decision maker is interested in, is modeled as a leaf
node (node without outgoing edges). Typically, the root nodes are drawn as rectangles,
while the non-root nodes are drawn as rounded rectangles. Consider the IN of Figure 1.
The text associated with the non-root nodes represents the corresponding conditional
probability values obtained from the CAST logic parameters (not shown in the figure)
while the text associated with the root nodes represents the prior probabilities. The texts
associated with arcs are time delays and are explained in Section 3. The belief
propagation scheme used in INs is based on independence of parents assumptions. Thus,
the marginal probability of a non-root node is computed with the help of its Conditional
Probability Table (CPT) and the prior probabilities of its parents. For instance, the
marginal probability of variable A is computed as
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P(A) = P(A I -B, -E)P(--B)P(-,E) + P(A I -B, E)P(-B)P(E) + P(A I B, -E)P(B)P(-E)
+ P(A I B, E)P(B)P(E)

= 0.005x 0.95x 0.99 + 0.95x 0.95 x 0.01 + 0.95x 0.05 x 0.99 + 0.99x 0.05x 0.01
= 0.06

The probability of D is then computed by using its CPT and the marginal probabilities of
A (computed above) and E. Thus

P(D) = P(DI -E, --A)P(--E)P(--) + P(D I -E, A)P(--E)P(A) + P(D I E, --A)P(E)P(--A)
+ P(D I E, A)P(E)P(A)

= 0.05x 0.99x 0.94 + 0.95x 0.99x 0.06 + 0.001 x 0.01 x 0.94 + 0.05x 0.01 x 0.06
= 0.11

P(E) = 0.01

P(B) = 0.05 C P(DIE,-,A) = 0.050
o P(DI-,E, A) = 0.950

P(Dt E,-,A) = 0.001
P(AI-E,-,B) = 0.005 P(DI E, A) = 0.050
P(Afl-E, B) = 0.950
P(AI E,-,B) = 0.950
P(AI E, B) = 0.990

Figure 1: A Sample Influence Net

Formally, Influence Nets are Directed Acyclic Graphs (DAGs) where nodes in the graph
represent random variables, while the edges between pairs of variables represent causal
relationships. The following items characterize an IN:

1. A set of random variables that makes up the nodes of an IN. All the variables in
the IN have binary states.

2. A set of directed links that connect pairs of nodes.
3. Each link has associated with it a pair of CAST Logic parameters that shows the

causal strength of the link (usually denoted as g and h values).
4. Each non-root node has an associated CAST Logic parameter (denoted as the

baseline probability), while a prior probability is associated with each root node.

Definition 1: An Influence Net is a tuple (V, E, C, B) where
V: set of Nodes,
E: set of Edges,
C represents causal strengths:

E 4- { (h, g) such that -1 < h, g < 1 },
B represents a Baseline or Prior probability:

V -> [0,1]
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5.2.1 CAST Logic

Chang et al. [Chang et al., 1994] developed a formalism, at George Mason University,
called CAusal STrength (CAST) logic as an intuitive and approximate language to elicit
the large number of conditional probabilities from a small set of user-defined parameters.
The logic has its roots in Noisy-OR approach [Agosta, 199 1;Drudzel and Henrion, 1993].
In fact, it can be shown that the Noisy-OR approach is a special case of the CAST logic.
The logic requires only a pair of parameter values for each dependency relationship
between any two random variables. The logic is briefly explained with the help of an
example shown in Figure 2. Readers interested in a detailed description of the CAST
logic should refer to [Chang et al., 1994;Rosen and Smith, 1996].

[ A h=+0.9, g= -0.7

b=0.3
SC • =+0.9, g= -0.5

Figure 2: An Influence Network with CAST Logic Parameters

Figure 2 contains four nodes A, B, C and X. On each arc, two causal strengths are
specified. These numbers represent the probability that a specified state of a parent node
will cause a certain state in the child node. Positive values on arcs are causal influences
that cause a node to occur with some probability, while negative values are influences
that cause the negation of a node to occur with some probability. For instance, the arc
between B and X has values -0.4 and 0.8. The first value, referred to as h, states that if B
is true, then this will cause X to be false with probability 0.4, while the second value,
referred to as g, states that if B is false, then this will cause X to be true with probability
0.8. Both h and g can take values in the interval (-1, 1). All non-root nodes are assigned a
baseline probability, which is similar to the "leak" probability in the Noisy-OR approach.
This probability is the user-assigned assessment that the event would occur independently
of the modeled influences in a net.

There are four major steps in the CAST logic algorithm that converts the user-defined
parameters into conditional probabilities:

a) Aggregate positive causal strengths
b) Aggregate negative causal strengths
c) Combine the positive and negative causal strengths, and
d) Derive conditional probabilities
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In Figure 2, there are eight conditional probabilities that need to be computed to obtain
the marginal probability of X. The marginal probability of X is computed as:

P (X) = P (XI -'A, -'B, -C) P (-,A, -'B, -'C) + P (XI -'A, -'B, C) P (-'A, -'B, C)
+ P (XI -A, B, -C) P (-A, B, -C) + P (X I -A, B, C) P (-A, B, C)
+ P (X IA, -'B, -,C) P (A, -'B, -'C) + P (X I A, -'B, C) P (-'A, -B, C)
+ P (X IA, B, -C) P (A, B, -C) + P (X I A, B, C) P (A, B, C)
(1)

The four steps, described above, are used to calculate each of these eight conditional
probabilities. For instance, to calculate the probability P (X I A, B, -'C), the h values on
the arcs connecting A and B to X and the g value on the arc connecting C to X are
considered. Hence, the set of causal strengths is {0.9, -0.4, -0.5 }.

Aggregate the Positive Causal Strengths: In this step, the set of causal strengths with
positive influence are combined. They are aggregated using the equation

PI = I1- (I (- C,.) VCj > 0
i

where Ci is the corresponding g or h value having positive influence and PI is the
combined positive causal strength. For our example

P1= 1-(1-0.9) =0.9

Aggregate the Negative Causal Strengths: In this step, the causal strengths with negative
values are combined. The equation used for aggregation is

NI = I1- l--I(1- C,.) VC,. < 0

where Ci is the corresponding g or h value having negative influence and NI is the
combined negative causal strength. Using the above equation, the aggregate negative
influence is found to be:

NI = 1-(1-0.4)(1-0.5)=0.7

Combine Positive and Negative Causal Strengths: In this step, aggregated positive and
negative influences are combined to obtain an overall net influence. The difference of
these aggregated influences is taken. The overall influence is obtained by taking the ratio
of this difference and the corresponding promoting or inhibiting influence.
Mathematically,

If PI > NI

AI= P1-NI
1-NI

If NI > PI

AI= NI-PI
l-PI

Thus, the overall influence for the current example is
AI = (0.9-0.7) /(1-0.7) =.66
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Derive Conditional Probabilities: In the final step, the overall influence is used to
compute the conditional probability value of a child for the given combination of parents.
P(child Ijth state ofparent states) = baseline + (1 - baseline) x Al when P1 > NI

= baseline - baseline x AI when P1 < NI

Using the above equation, P (X I A, B, -'C) is obtained as:
P (XI A, B, -C) = 0.5 + 0.5 * 0.66 = .863

The steps explained above are repeated for the remaining seven conditional probabilities
in Equation 1. If the experts had sufficient time and knowledge of the influences, then the
probability matrix for each node can be used instead of g and h values. Also, after
estimating the conditional probability matrix, if some entries do not satisfy the expert,
then those entries can be modified and then used for computing the marginal probability
of a node.

5.3 Timed Influence Nets

Influence Nets are designed to capture static interdependencies among variables in a
system. However, a situation where the impact of a variable takes some time to reach the
affected variable(s) cannot be modeled by either of the two approaches. Wagenhals et al.
[1998] have added a special set of temporal constructs to the basic formalism of Influence
Nets. The Influence Nets with these additional temporal constructs are called Timed
Influence Nets (TINs) [Haider and Levis, 2004;Haider and Zaidi, 2004]. The temporal
constructs allow a system modeler to specify delays associated with nodes and arcs.
These delays may represent the information processing and communication delays
present in a given situation. For example, in Figure 1, the inscription associated with each
arc shows the corresponding time delay it takes for a parent node to influence a child
node. For instance, event B influences the occurrence of event A in 5 time units.

10[
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0.0 2 4 .6 10 12

Dispatch

Figure 3: Probability Profiles of Event D

TINs have been experimentally used in the area of Effects Based Operations (EBOs) for
evaluating alternate courses of actions and their effectiveness to mission objectives.
[Wagenhals and Levis, 2000; Wagenhals and Levis, 2001; Wagenhals et al., 2003] The
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purpose of building a TIN is to evaluate and compare the performance of alternative
courses of action. The impact of a selected course of action on the desired effect is
analyzed with the help of a probability profile. Consider the net shown in Figure 1.
Suppose it is decided that actions B and E are taken at time 1 and 7, respectively.
Because of the propagation delay associated with each arc, the influences of these actions
impact event D over a period of time. As a result, the probability of D changes at a
different time instants. A probability profile draws these probabilities against the
corresponding time line. The probability profile of event D is shown in Figure 3.

The following items characterize a TIN:
1. A set of random variables that makes up the nodes of a TIN. All the variables in

the TIN have binary states.
2. A set of directed links that connect pairs of nodes.
3. Each link has associated with it a pair of parameters that shows the causal strength

of the link (usually denoted as g and h values).
4. Each non-root node has an associated baseline probability, while a prior

probability is associated with each root node.
5. Each link has a corresponding delay d (where d > 0) that represents the

communication delay.
6. Each node has a corresponding delay e (where e > 0) that represents the

information processing delay.
7. A pair (p, t) for each root node, where p is a list of real numbers representing

probability values. For each probability value, a corresponding time interval is
defined in t. In general, (p, t) is defined as

([P], P2,..., P.1, [[tl I, t1215 [t215 t22], .... , [tnl, t.2]] )5

where til <t i2 andtij>0V i= 1,2, .... ,nandj = 1,2
The last item in the above list is referred to as an input scenario, or sometimes
(informally) as a course of action. Formally, a TIN is described by the following
definition.

Definition 2 Timed Influence Net (TIN)
A TIN is a tuple (V, E, C, B, DE, Dv, A) where

V: set of Nodes,
E: set of Edges,
C represents causal strengths:
E - { (h, g) such that -1 < h, g<1 },
B represents Baseline / Prior probability: V -4 [0,11,
DE represents Delays on Edges: E -- Ze, (where Z÷ represent the set of
positive integers)
Dv represents Delays on Nodes: V -- Z+, and
A (input scenario) represents the probabilities associated with the state of
actions and the time associated with them.
A : R "- {(Pl, P2,... -ýpn],[[t11qt12], [t21,t22], ... ,[tnl,tn2l]]

such that pi = [0, 1], tij - Z* and tIl < ti2 , V i = 1, 2, n andj = 1, 2
where R c V } (where Z* represent the set of nonzero positive integers)
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5.4. Limitations of TIN and the Proposed Enhancements

5.4.1 Modeling of Memory

The existing TINs are not capable of modeling the impact of different sequences of
actions on the desired effect. This behavior is because of the underlying assumption in
TINs that events are memoryless, i.e. the probability of occurrence of an event at a
particular time instant does not depend upon its own probabilities of occurrence during
the previous time instants. As a consequence, the probability of an event depends only
upon the actions executed so far and not on the sequence in which these actions are
executed. The proposed approach adds an optional self-loop to each node. The events
having self-loops are no longer assumed to be memoryless. Like other arcs in a TIN, a
self-loop is also specified using the CAST logic. A higher value (either positive or
negative) of the parameters imitates strong memory while a lower value imitates weak
memory. If both parameters (h and g) are set to zero then this is equivalent of having no
self-loop. Thus, this class of TINs is a superset of the TINs that were defined in
Definition 2. In the TIN of Figure 1, if events A and D depend upon their previous states,
then this phenomenon is captured by adding a self-loop to each of them as shown in
Figure 4.

The addition of self-loop not only changes the final probability of the variable of interest,
but it also has an affect on the trajectory of the probability profile. Consider the TIN
shown in Figure 5. It has three variables A, B, and C. In the absence of a self-loop, the
probability of event C depends only upon the probability of its parents, that is, A and B.
Suppose two courses of action required to be evaluated for this model. In the first course
of action (COA 1), actions A and B are taken at times 10 and 12, respectively while in the
second course of action 2 (COA 2), A and B are taken at time 12 and 10, respectively.
The respective probability profiles of C as a result of these courses of action are shown in
Figure 6(a) and 6(b). Despite the fact that the trajectories shown in the two profiles differ
significantly, the final probability of event C is same (0.85) in both profiles. This
behavior is due to the fact that the underlying TIN model is memoryless. Thus, no matter
what the sequence of actions A and B is, the likelihood of occurrence of C is same once
both actions are taken.

Figure 4: A Timed Influence Net with Self-loop
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1 i/

Figure 5: A TIN having 3 Nodes
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Figure 6: Probability Profiles of Event C in the TIN of Figure 5

In contrast to the given situation, suppose the likelihood of C at a particular time instance
depends upon its own likelihood in the past. The proposed methodology attempts to
model this situation by adding a self-loop to event C. The modified TIN is shown in
Figure 7. The text associated with the self-loop shows the corresponding CAST logic
parameters. In addition to their normal semantics, the parameters attached to a self-loop
also represent the strength of the memory associated with the corresponding variable. For
instance, high values of g and h strongly causes a node to remain in its previous state,
while a lower values of g and h represents a weak memory and thus the previous state of
a variable does not have a large influence on its current state. The two courses of action
described earlier (COA 1 and COA 2) are executed for the model of Figure 7(a) and the
respective profiles are shown in Figure 8.

It can be seen from the profiles that the final probability of event C is different in the two
profiles. This change in the behavior of the TIN occurs because of the fact that now the
present likelihood of C depends upon its likelihood in the past along with the
probabilities of its parents. For instance, in the profile of Figure 8(a), event A happens
first which causes an increase in the probability of C (0.85) as the occurrence of A has a
strong positive influence on the occurrence of C. B happens after A. Despite its negative
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influence, B fails to decrease the likelihood of C as C has a strong memory that causes it
to remain in the previous state along with the fact that a strong positive influence from A
counterbalances a moderate negative influence from B. Thus, the final probability of C is
0.87. In the second profile (Figure 8(b)), B happens first and due to its negative influence
on C the probability of C is decreased to 0.56. A happens next and it slightly increases
the probability of C to 0.63 but not as much as it is increased in COA 1 because of the
dependency of C on its previous state. While computing the profiles of Figures 6 and 8, it
can be noticed that the profiles have quite a different behavior in both courses of action.

<'0.90, -0.90) 133 -0.33)

C C

(a) Strong Memory (b) Weak Memory

Figure 7: Different Levels of Memory Modeled Using Self-Loops

As mentioned earlier, if the h and g values associated with a self-loop are low, then the
loop represents a weak influence of the previous state of a node on its current state.
Suppose in the model of Figure 7(a), the g and h values associated with the self-loop are
revised and are as shown in Figure 7(b). The same two courses of action (COA 1 and
COA 2) are executed in this situation and the resultant probability profiles are shown in
Figure 9: a weak memory has resulted in the final probabilities very close to what is
obtained in the profiles based on a memoryless TIN (Figure 6).
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C I- C

(a) COA 1 (b) COA 2

Figure 8: Probability Profiles of Event C in the TIN of Figure 7(a)
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Up until now, it is assumed that a node's likelihood at a previous time stamp is used to
update its current likelihood when a new piece of information arrives from one of its
parents. A self-loop can also be used to update the probability of a node at a regular time
interval. This time interval is specified as the delay associated with a self-loop. Thus a
self-loop can be used to model decay in the belief of a node as the time passes and no
new information from its parents influences it. Suppose in the model of Figure 7, the self-
loop associated with node C has a delay of 1 time unit which means that the probability
of C is updated after every 1 time unit regardless of whether there is new information
coming from its parents or not. In the sequel, if the delay associated with a self-loop has a
value of zero then it means that a previous value of a node is used to update its current
likelihood only when there is new information coming from its parents. Positive values
other than zero indicate that the update would occur at a regular time interval.
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0.9 0.9

0.8 0.8

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

0.3 0.3
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0.0 2 4 6 8 10 12 14 16 0.0 2 4 6 8 10 12 14 16

C C

(a) COA 1 (b) COA 2

Figure 9: Probability Profiles of Event C in the TIN of Figure 7(b)

5.4.2 Modeling of Time Varying Influences

Events happen and they influence other relevant events. In many cases, the intensity of
their influences decays over time. Thus, an event having a very strong influence at the
time of its occurrence on another event might have an insignificant influence after a
certain period of time. In other words, the influence of an event is time-variant. The time-
varying property also holds true for the state of an action. An action may occur in two
different states during two different time intervals. In TINs terminology, these two types
of time-varying properties are referred to as persistence. The one related to the time
dependent influence of an action is called persistence of influence, while the one related
to the time-dependent state of an action is called persistence of action. Among these two
types of persistence, a TIN currently models the latter one only. It assumes that the causal
strength of the influences does not change over time, i.e., the underlying stochastic model
is stationary. Thus, it lacks the ability to model persistence of influence. This paper
attempts to overcome this limitation of TINs. The proposed approach enables a system
modeler to model non-stationary influences. Instead of asking a modeler to specify
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single- valued influences, the proposed approach would allow the modeler to specify
various strengths of influences and their corresponding window of effectiveness.

Influence of A on C when information at
A P(A) = 0.05 @ 0 A is t time units old

=1.0 @4 Strong: 2 < t < 4
2 Moderate: 4 < t < 6

Low: t > 6
Influence of B on C when information at

1 P(B) = 0.1 @0 B is t time units old

= 0.6 @ 7 Strong: 1 < t < 3
= 1.0 @ 10 Low: t > 3

Figure 10: A TIN Having Time-Variant Influences

Consider the TIN of Figure 10. The prior probability of nodes A and B at time 0 is 0.05
and 0.1, respectively. Action A is taken at time 4 while the probability of occurrence of B
becomes 0.6 at time 7 and 1 at time 10. The CAST logic parameters associated with the
arc are time-varying and are read in the following manner. A has a high positive
influence on C, if the change occurred at A is 2 to 3 time units old, and its influence is
moderate, if the change occurred at A is 4 to 5 time units, while its influence is low if the
change occurred at A is more than 6 time units old. For simplicity "high influence" is
assumed to mean that both h and g have the same values though with opposite signs (one
is positive and the other is negative). Similarly, B has a strong negative influence on C
when the change that occurred at B is 1 to 2 time units old, while it has a low influence
when the change occurred at B is more than 2 time units old. Due to the provided input
scenario, the probability of C is updated at time 6, 8, and 11 as the time delays between A
and C and B and C are 2 and 1, respectively. C is updated at time 6 because action A is
taken at time stamp 4. The last change that occurred at B is at time 0. Thus, the
probability of B used in computing the marginal probability of C is 0.1. Since this value
is 6 time units old, while computing the CPT values for node C a low negative influence
of B on C is considered. The TIN with a particular instance of the CAST logic parameters
along with the prior probabilities is shown in Figure 11. The Conditional Probability
Table (CPT) values computed under this situation are also shown beside node C. Based
on the parameters shown in the figure, the marginal probability of C at time 6 is
computed as given below.

P(C) = P(CI--A,--,B) x P(--A) x P(--B) + P(CI--A, B) x P(A) x P(B)
+ P(CI--A, B) x P(--A) x P( B) + P(CI A, B) x P(A) x P(B)

= O.07xOxO.9 + O.O3xOxO.9 + O.97x Ix 0.] + 0.93x 1x 0.9
= 0.93
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P(A) = 1

P(C A,-,B) = 0.07

P(B) 0.1 C P(CIA, B) = 0.03
P(CI A, B) = 0.97

SP(CI A, B)=0.93
B

Figure 11: An Instance of the TIN of Figure 10

The next update of P(C) occurs at time 8. At this time instance, the marginal probability
of A is 4 time units old; thus a moderate positive influence of A on C is considered while
computing the CPT values. The probability of B is only 2 time units old and has a strong
negative influence on C. The resultant parameters, along with the CPT values, are shown
in Figure 12. The probability of C at time 8 is computed as shown below.

P(C) = P(CI-,A,-B) x P(-A) x P(--B) + P(Cl-4, B) x P(A) x P(B)
+ P(CI-,4, B) x P(---,) x P( B) + P(CI A, B) x P(A) x P(B)

= 0.85x 0x 0.4 + O.02x Ox 0.6 + 0.98x I x 0.4 + 0.15x lx 0.6
= 0.48

The last update of P(C) occurs at time 11. The marginal probability of A is 7 time units
old, while B's is 2 time units old. Thus, a low positive influence from A and a strong
negative influence from B are considered. The updated probability of C is found to be
0.07. The above analysis demonstrated how non-stationary CAST logic parameters have
resulted in non-stationary CPT values that are used in computing the probability of C at
various time stamps. Thus, despite the fact that an action is still in effect, it may loose its
significance as time passes by. The non-stationary CPT values used in the above
computations are compared in Table 1 along with the time of their computation.

P(A) = 1

(0.66, 
06ý

C (CI-,A,--,B) = 0.85
P(B) =0 P(CI-,A, B)= 0.02

P(CI A, B) = 0.98
P(CI A, B) = 0.15

Figure 12: Another Instance of the TIN of Figure 10
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Table 1: for Non-Stationar CPTs
Time

Parents Combination 6 8 11

P(Cl-,A,-,B) 0.07 0.85 0.93
P(CI-1A, B) 0.03 0.02 0.03
P(C[ A,-,B) 0.97 0.98 0.97
P(CI A, B) 0.93 0.15 0.07

5.5. Dynamic Influence Nets (DINs)

The incorporation of the proposed structural and parametric changes in TINs, as
described in the previous sections, would enable a system modeler to observe the impact
of repeated actions. For instance, an air-strike on a bridge makes it inoperable for several
days. The current implementation of TINs would assume that the influence of the air-
strike remains the same throughout the campaign. It is obvious that the assumption is
unrealistic. Furthermore, in the event of a new air-strike, a TIN would discard the impact
of the previous air-strike as the events in a TIN are assumed to be memory-less. The
proposed approach, which allows time-varying influences and incorporation of memory
through self-loops, models this situation in a more intuitive manner. Like other arcs in a
TIN, a self-loop also represents influence - from the previous state of a node to its
current state. Thus, time-varying parameters can be associated with a self-loop too. For
the air-strike example, the presence of self-loop would combine the influences of both (or
many) air-strikes while the strength of the self-loop accounts for the time delay between
the two air-strikes. If the timing of two air-strikes is far apart, then there is almost no
influence of the first strike on the operability of the bridge (provided that the bridge has
been rebuilt), but if the two strikes occurred very close in time then their impact would be
more destructive. In other words the impact of two actions on the effect convolves. The
issue is further explained with the help of the following example. Suppose the variables
in the model of Figure 10 have the following descriptions:

A - Regional Countries Opposes Sanctions against Country R
B - Country G Threatens to Take Unilateral Actions against Country R
C - Leader of Country R Decides to Accept UN Demands
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(0.33, -0.33,0) Influence of A on C when information at
A A is t time units old

Strong: 2 < t < 4
P(A) = 0.05@ 0 0 Moderate: 4 < t < 6

=1.0 @4 . Low: t > 6

B Influence of B on C when information at

B is t time units old
P(B) = 0.1 @ 0 Strong: 1 < t < 3

= 0.6 @ 7 Low: t > 3
= 0.0(,10

Figure 13: A TIN with Self-Loop and Time-Varying Influences
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Figure 14: Comparison of Profiles Generated by a TIN and a DIN

Further assume that the belief of event C at a particular time depends upon its own belief
at a previous time instance though not very strongly. This behavior is modeled by adding
a self-loop having a low influence on event C. The resultant model is shown in Figure 13.
The probabilities of actionable events A and B are changed at various time stamps, as
described earlier and shown in the figure. The resultant probability profile of C is shown
in Figure 14(a). If the same situation is modeled using an existing TIN, that is, without
the self-loop and time-invariants CAST logic parameters, then the resultant profile of C is
as shown in Figure 14(b). Currently, there is no validation technique that helps us in
identifying which profile is a better representation of the situation at hand, but it can be
said that the profile shown in Figure 14(a) is more in agreement with intuition than the
profile of Figure 14(b). The impact of B is more dominating in the profile of Figure 14(a)
as event A happened 6 time units earlier and has lost its significance. Furthermore, the
previous state of event C also has an impact on its current state. Thus, a different
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sequence of actions would have resulted in a completely different outcome. Profile of
Figure 14(b) fails to capture these characteristics.

The incorporation of the new constructs (self-loop and time-varying parameters) in the
framework of TIN based modeling and reasoning enhances the capabilities of this
modeling paradigm in terms of capturing dynamic uncertain scenarios. A TIN with these
additional constructs has been defined as a Dynamic Influence Net (DIN). The following
items characterize a DIN while a formal definition is given in Definition 3.

1. The nodes of a DIN are set of random variables. All the variables in the DIN have
binary states.

2. A set of directed links that connect pairs of nodes. A node can also have an
optional self-loop.

3. A pair (c, t) for each link, where c is a list of tuples representing the CAST logic
parameters. For each element in c, a corresponding time interval is defined in t.
This interval represents the time during which the corresponding element in c is in
effect. In general, (c, t) is defined as

([(hi, gi) (h2, g2),., (hn, gn)], [(tlI, t12), (t21, t22) .... , (tnl, tn2)]

where ti, < ti2 and tij > 0 V i = 1, 2, n andj = 1, 2
4. Each non-root node has an associated baseline probability, while a prior

probability is associated with each root node.
5. Each link has a corresponding delay d (where d > 0) that represents the

communication delay.
6. Each node has a corresponding delay e (where e > 0) that represents the

information processing delay.
7. A pair (p, t) for each root node, where p is a list of real numbers representing

probability values. For each probability value, a corresponding time interval is
defined in t. In general, (p, t) is defined as

([Pl, P2,...-, Pn], [[tllI, t 12], [t21, t22], ... -, [tnl, tn2]]

where til < ti2 and tij > 0 V i = 1, 25 .... , n andj = 1, 2

Definition 3: A Dynamic Influence Net is a tuple (V, E, C, B, DE, Dv, A) where
V: set of Nodes,
E: set of Edges,
C represents causal strengths:

E --> {([(hi, gj) (h 2, g2). , (hn, gn)], [(tll, t12), (t2 1, t 22)5 .... , (tnl, tn2)])

such that -1 < hi, gi < 1 }, tij -> Z+ and ti !< ti2, V i = 1, 2, ... , n andj = 1, 2}
B represents Baseline / Prior probability: V -> [0,1],
DE represents Delays on Edges: E -4 Z+,
Dv represents Delays on Nodes: V -- Z+, and
A (input scenario) represents the probabilities associated with the set of actions
and the time associated with them.

A: R -' {([PI, P2,..., pn], [[tll, t] 21, [t 2 1, t22]. , [t.. , tn 2]] )
such that pi = [0, 1], tij 4- Z* and til _< ti2, V' i = 1, 2, ..., n

andj = 1, 2 where R c V }
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5.6 Conclusions

The paper presents structural and parametric enhancements to Timed Influence Nets
based modeling framework. Currently, nodes in a TIN are considered memoryless. This
inability results in lack of modeling the impact of different sequences of actions on a
desired effect. TINs also fail to capture time-varying influences. The proposed
enhancements would allow a system modeler to specify such influences. Thus, the
modeler would be able to specify both stationary and non-stationary influences.
Furthermore, the dependency of an event on its previous state could also be modeled by
adding a self-loop to the corresponding node. The incorporation of self-loop adds
memory to the existing memory-less TIN. The addition of both self-loop and time-
varying influences would enable a modeler to model impacts of repeated actions on an
effect. Currently, in the event of repeated actions, a TIN only considers the latest impact
on the effect while ignoring the previous attempts. The proposed DIN would convolve
the impact of repeated actions on the desired effect and, thus, further enhance the
capabilities of TINs based modeling paradigm.
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SECTION 6

On Finding Effective Courses of Action in a Complex Situation
Using Evolutionary Algorithms

Sajjad Haider and Alexander H. Levis

6.1. Introduction

In this modem world, any organization's, either military or business, effort is guided by a
set of objectives/desired effects that it plans to achieve in an uncertain complex
environment. A decision maker, working in that organization, is typically confronted by
the task of finding a supposedly optimal strategy to achieve these effects. The pre-
requisite of this task is the modeling of cause-effect/relevance relationships among the
variables that exist in the environment. The last two decades have seen an emergence of
the use of probabilistic reasoning framework as a modeling tool for capturing such
relationships. Commonly referred to as Bayesian Networks (BN) [Chamiak, 1991;
Neapolitan, 2003; Pearl, 1987], the framework uses a graph-theoretic representation to
explicitly show the dependencies among variables in a problem domain. Despite their
ability to represent uncertain domain in a compact and easy to read manner, the
knowledge acquisition process and inference mechanism of BNs is intractable. [Cooper,
1990; Dagum and Luby, 1993] Influence Nets (INs), an instance of the Bayesian
framework, were proposed [Chang et al., 1994; Rosen and Smith, 1996] a decade ago to
overcome the intractability issues present in BNs. They employ an approximation
inference algorithm and non-probabilistic knowledge acquisition interface that does not
require an exponential number of parameters.

Both Bayesian Networks and Influence Nets are designed to capture static
interdependencies among variables in a system. However, a situation where the impact of
a variable takes some time to reach the affected variable(s) cannot be modeled by either
of the two approaches. In the last several years, efforts have been made to integrate the
notion of time and uncertainty. [Boyen and Koller, 1998; Hanks et al., 1995; Kjaerulff,
1992; Santos and Young, 1999] Wagenhals et al. [Wagenhals et al. 1998] have added a
special set of temporal constructs to the basic formalism of Influence Nets. The Influence
Nets with these additional temporal constructs are called Timed Influence Nets (TINs)
[Haider and Levis, 2004; Haider and Zaidi, 2004]. TINs have been experimentally used
in the area of Effects Based Operations (EBOs) for evaluating alternate courses of actions
and their effectiveness to mission objectives. [Wagenhals and Levis, 2000; Wagenhals
and Levis, 2001; Wagenhals et al., 2003].
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Once a dynamic uncertain situation is modeled using TIN; a decision maker is interested
in the identification of a set(s) of actions and their time of execution that would maximize
the likelihood of achieving the desired effect. The task is sometimes informally referred
to as the best course of action (COA) determination. This paper applies Evolutionary
Algorithms (EA) to accomplish the task of effective COA determination. It is important
to note that any approach, which attempts to automate the process of identification of an
effective COA, has to consider several temporal and causal constraints that exist among
actionable events. Currently, TINs do not have a mechanism to specify these constraints.
The paper proposes a constraint specification language (CSL) that aids a system modeler
in specifying these temporal and causal constraints. The proposed technique takes these
constraints into consideration while identifying an effective strategy in a given situation.

The optimization problem described above belongs to the category of Mixed Integer
Nonlinearly Constraint Optimization. The nonlinearities are encoded in the form of
conditional probabilities, while integral constraints result from the binary nature of
actionable events. Besides providing the optimal or near optimal courses of actions, the
proposed approach also provides a scheme to generalize the alternate effective courses of
actions. It should be mentioned that, from an academic point of view, the problems
presented in this paper are relatively new and not much work has been reported in the
literature that attempts to solve them in an automated fashion. A few exceptions are the
work presented by Wagenhals [Wagenhals, 2000] and Haiying et al. [Haiying et al.,
2004]. The current practice among the community is to use hit and trial methods to
identify an effective course of action.

The rest of the paper is organized as follows. Sections 6.2 and 6.3 provide a brief
overview of Timed Influence Nets and Evolutionary Algorithms, respectively. Section
6.4 describes the issues that need to be considered while finding an effective course of
action. The section also explains the proposed constraint specification language and
specifics of the EA used in this paper. The results produced by the proposed approach,
when applied on a real model, are explained in Section 6.5. Finally Section 6.6 concludes
the paper and provides future research directions.

6.2 Timed Influence Nets

The modeling of the causal relationships in TINs is accomplished by creating a series of
cause and effect relationships between some desired effects and the set of actions that
might impact their occurrence in the form of an acyclic graph. The actionable events in a
TIN are drawn as root nodes (nodes without incoming edges). A desired effect, or an
objective in which a decision maker is interested, is modeled as a leaf node (node without
outgoing edges). Typically, the root nodes are drawn as rectangles while the non-root
nodes are drawn as rounded rectangles. Figure 1 shows a partially specified TIN. Nodes
B and E represent the actionable events (root nodes) while node C represents the
objective node (leaf node). The directed edge with an arrowhead between two nodes
shows the parent node promoting the chances of a child node being true, while the
roundhead edge shows the parent node inhibiting the chances of a child node being true.
The inscription associated with each arc shows the corresponding time delay it takes for a
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parent node to influence a child node. For instance, event B, in Figure 1, influences the
occurrence of event A after 5 time units.

5 1

Figure 1: An Example Timed Influence Net (TIN)

The purpose of building a TIN is to evaluate and compare the performance of alternative
courses of actions. The impact of a selected course of action on the desired effect is
analyzed with the help of a probability profile. Consider the TIN shown in Figure 1.
Suppose the following input scenario is decided: actions B and E are taken at times 1 and
7, respectively. Because of the propagation delay associated with each arc, the influences
of these actions impact event C over a period of time. As a result, the probability of C
changes at different time instants. A probability profile draws these probabilities against
the corresponding time line. The probability profile of event C is shown in Figure 2.

The following items characterize a TIN:
1. A set of random variables that makes up the nodes of a TIN. All the variables in

the TIN have binary states.
2. A set of directed links that connect pairs of nodes.
3. Each link has associated with it a pair of parameters that shows the causal

strength of the link (usually denoted as g and h values).
4. Each non-root node has an associated baseline probability, while a prior

probability is associated with each root node.
5. Each link has a corresponding delay d (where d > 0) that represents the

communication delay.
6. Each node has a corresponding delay e (where e > 0) that represents the

information processing delay.
7. A pair (p, t) for each root node, where p is a list of real numbers representing

probability values. For each probability value, a corresponding time interval is
defined in t. In general, (p, t) is defined as

([P I, P2,..., Pn], [[tll, t12], [t21, t22],...5 [tnl, tn2l]])

where til < ti2 and tij > 0 V i = 1, 2, n andj= 1, 2

The last item in the above list is referred to as input scenario, or sometimes (informally)
as course of action. Formally, a TIN is described by the following definition.
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Figure 2: Probability Profile for Node C

Definition 1 Timed Influence Net (TIN)
A TIN is a tuple (V, E, C, B, DE, Dv, A) where
V: set of Nodes,
E: set of Edges,
C represents causal strengths:

E -4 { (h, g) such that -1 < h, g < 1 },
B represents Baseline / Prior probability: V 4- [0,1],
DE represents Delays on Edges: E -4 N,
Dv represents Delays on Nodes: V -4 N, and
A (input scenario) represents the probabilities associated with the state of actions
and the time associated with them.
A: R 4 -- (([P1,P2,...,pn],[[tll,t12], [t J21,22] .... ,[tnltn2]]

such that pi = [0, 1], tij -> Z and ti I< ti 2, V i =1, 2, n andj = 1, 2 where
RcV}

6.3 Evolutionary Algorithm

Evolutionary Algorithms (EAs) can be interpreted as a parallel adaptive search
procedure. They have been applied to a wide variety of application areas including
optimization, search, learning, automated programming, adaptation, etc. They are
modeled after the organic evolutionary processes found in nature. The current EAs have
their roots in three distinct efforts that were initiated in parallel almost four decade ago:
Evolution Strategies [Schwefel, 1975;Schwefel, 1995] Evolutionary Programming [Fogel
et al., 1966], and Genetic Algorithms [DeJong, 1975;Goldberg, 1989].

An EA consists of a population of individual solutions that are selected and modified in
order to discover overall better solutions in the search space. An individual in the
population is referred to as genome or phenome. One (or more) solution(s) is (are)
modified to produce new offspring in the population. Each solution is evaluated using a
fitness value that represents the quality of the solution in the context of a given problem.
The major steps involved in a canonical EA are shown in Table 1 [DeJong, 2005]. There
are three major design issues, namely, representation, selection, and variation operators,
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need to be considered while designing an EA for a specific problem. These design issues
are briefly explained in the following sub-sections.

Table 1: A Canonical Evolutionary Algorithm

Randomly generate the initial population
Do until a stopping criterion is met

Select parent(s) using a selection procedure.
Create new offspring(s) by applying the variation operators on the
parents.
Compute the fitness of the new offspring(s).
Select member(s) of the population to die using a selection procedure.

6.3.1 Representation

Representation is among the most critical design issues while developing an EA. In an
EA, there are two possible types of representations. When a representation is stated in its
natural state it is said to be a phenotype. For example, a real valued optimization problem
would be represented as a set of real valued coordinates. On the other hand, it may be
necessary to map a phenotype representation into another structure to make it easier for
the algorithm to modify and exchange information. In many cases the phenotype can be
mapped into a representation that resembles, at a very high level, a sequence of local
structures or building blocks. In this case, the representation is referred to as a genotype.

6.3.2 Selection

Selection in evolutionary algorithms is the process of choosing which individuals
reproduce offspring and which individuals survive to the next generation. When selection
is used to choose which individuals reproduce, the process is referred to as pre-selection
(parent(s) selection). When it is used to select the individuals that survive to the next
generation it is called post-selection (survival selection). Selection can further be
categorized as deterministic or probabilistic. Deterministic selection tends to behave
more like greedy hill-climbing algorithms and exploit the nearest areas with promising
solutions. Probabilistic selection schemes are more exploratory and search the landscape.

An important decision required when deciding on what type of selection schemes to use
is whether to emphasize exploration or exploitation. Schemes based on exploration, are
said to have a low selection pressure, while schemes based on exploitation, are said to
have greater selection pressure. It can be said that the selection pressure is a vague
measure of how often more fit individuals are selected to reproduce and/or live to the
next generation.

It should be mentioned that EAs are not necessarily good at finding optimal solutions.
For complex problems, the global optimal solution may be very difficult to locate for any
algorithm. This leads to a trade-off between exploring the landscape for areas that appear
to hold good solutions and exploiting the good area found. This can be a very difficult
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balancing act. Too much exploration may result in not finding the local optima in the
regions explored, while too much exploitation can lead to behavior similar to a greedy
hill climbing algorithm. The key is to find a selection pressure that balances exploration
and exploitation.

Selection schemes can be further categorized into generational or steady-state schemes. A
selection scheme is generational when the entire current population is replaced by its
offspring to create the next generation; while, a scheme is referred to as steady-state
when a selected few offspring replace a few members of the current generation to form
the next generation. Some of the popular selection schemes are given below:

Fitness Proportional: In this scheme, individuals are selected based on their fitness in
proportion to the other individuals in the population.

Rank Selection: In rank selection, individuals in the population are first ranked by fitness
and then selected for reproduction based on a probability proportional to rank.

Binary Tournament: In this scheme, two individuals are randomly selected from the
population and compared. The one with the highest fitness is selected for reproduction.
Then another two individuals are randomly selected and the best fit kept as the mate to
the first parent.
Truncation: This scheme is used during post-selection. Populations of parents and
offspring are merged together and top k fittest individuals survive to the next generation.

Uniform Stochastic: In this scheme, individuals are selected with uniform probabilities.

6.3.3 Variation Operators

Mutation: Mutation is a genetic operator by which small modifications are made to a
single genotype or phenotype of a selected individual. For real-valued phenotype
approaches, the mutation operator is usually of the form of a small Gaussian change to
the phenotype. For binary coded genotypes, a mutation is a random bit flip.

Crossover: Crossover is where two or more individuals exchange information to create
one or more new individuals. In its simplest form, a single random locus is selected as a
slice point and the segments are exchanged between two individuals at the locus. Figure
2.10 shows an example of a one-point crossover. In contrast to the one-point crossover, a
multi-point crossover is when more than one locus is selected and information is
exchanged in segments between the loci points.

IAILB CIDIE FI a b C D IE IF
Parent 1 Ez2

laLb c d elfl I A IB Ic d e f
Parent 2

Figure 3: One-Point Crossover
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6.4. ECAD-EA Methodology

The previous two sections described the main tools i.e., TIN and EA, used in this paper to
identify an effective course of action in a dynamic uncertain situation. As discussed
earlier, the term course of action in the context of this paper means the identification of a
set of actions to be selected in a plan, their sequences, and their time of executions that
maximize/minimize a certain metric (or set of metrics) related to the desired effect(s).
The proposed approach that accomplishes this task is termed as ECAD-EA (Effective
Courses of Action Determination Using Evolutionary Algorithms). Besides a completely
specified TIN, the approach requires a system modeler to specify several other items
before it determines an effective course of action. Some of these items are given below
followed by their explanations, while Figure 4 shows the inputs and outputs of the
ECAD-EA methodology in the form of a block diagram.

(a) Windows of Opportunity and Observation
(a) Identification of a Robust Metric
(b) Single or Multiple Desired Effects
(c) Constraints among Actionable Events

6.4.1 Windows of Opportunity and Observation

The proposed ECAD-EA methodology requires a system modeler to specify two
parameters that aid in creating a boundary around the solution space. The first parameter
is the duration in which all the actions must take place. This duration is referred to as
either window of opportunity or action window. It should be mentioned that the window
of opportunity refers to the time interval during which the whole plan should be executed.
If some actions have more strict temporal requirements for their execution, then these
requirements can be specified with the help of the constraint specification language
discussed in subsection 7.4.5. The second parameter is the time period in which a
decision maker is interested in getting the desired results. This duration is referred to as
observation window. The two terms are explained further towards the end of this section
with the help of an example.

Windows of Opportunity
and Observation •1

Timed Influence Net

Constraints Among
Actionable Events ECAD-EA
Set of Metrics along
with their Weights

Set of Desired Effects
along with their 10
Weights

Figure 4: Block Diagram of ECAD-EA
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6.4.2 Identification of a Robust Metric

To judge the fitness of a COA, a set of metrics is needed that can be used as Measures of
Performance (MOPs). All the metrics discussed in this paper evaluate a COA in terms of
the desired effect's probability profile produced by that particular COA. The fitness of a
COA can be measured using either a simple or a composite metric. In case of a composite
metric, weights should be assigned to each of the individual metric. Weights assigned to a
metric may vary from situation to situation and is upon the discretion of the system
modeler. A selected metric (or set of metrics) guides the EA through probability profiles'
space while the EA searches for an effective COA. There are several features of a
probability profile that can be considered during its evaluation. A preliminary list of
features have been identified that could constitute potential metrics. The list includes the
following and is explained with the help of probability profile of Figure 5.

1) Maximum Probability Achieved: This metric specify the highest probability
achieved by the probability profile of a desired effect during the window of
observation. For instance, in the profiles of Figure 5 the highest probability
produced by COA #1 is 0.9 in contrast to 0.8 produced by COA #2.

2) Time to Reach the Maximum Probability: This metric is related to the first one
and it specifies the time at which the maximum probability is achieved. For
instance, COA #1 in Figure 5 has produced a better probability value (0.9) but the
value is achieved at time 8. COA #2, on the other hand reaches the probability of
0.8 at time 6. If Metric 1 is considered alone then COA #1 would be considered
better, but if a decision maker is interested in getting the probability of desired
effect above a certain threshold, then COA #2 might be considered better if it
satisfies the threshold requirement.

3) Probabilities at Specific Points/Intervals: A decision maker might be interested in
profiles that have probabilities above (below) a certain threshold or highest at
specific time instances or intervals. For instance, in Figure 5, a decision maker
might be interested in those profiles which have higher probabilities during the
time interval 4 to 8. COA # 1, in this case, is superior to COA #2. On the other
hand, if the interval under consideration is between time 8 and 11, then COA #2
would be considered better. The time instances/intervals could be a list of values,
i.e., the decision maker requires the probability to be above (below) certain
thresholds at time 3, 9, and 13.

4) Area Under the Curve (AUC): This metric represents the area under a probability
profile. The computation of AUC for probability profiles of Figure 5 is shown in
Table 2. Based on the metric, it can be said that COA #2 is better than COA #1.
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Figure 5: Two Competing Courses of Actions

Once a set of metric is specified, along with their corresponding weights, the fitness of a
particular COA is measured as a weighted sum of the selected metrics. In other words,

fitness(COA x) = w, ml + w2 m2 +............ Wn Inn (1)

where w, is the weight corresponding to the metric ml. In such cases when multiple
metrics are considered, each metric is normalized on the scale of 0 to 1.

6.4.3 Single/Multiple Desired Effects (or Objectives)

A given problem could have either single desired effect or multiple (at times conflicting)
desired effects. In case of multiple desired effects, a system modeler needs to weight the
importance of each desired effect. The objective function then becomes a weighted
average certain functions of each desired effect's probability profile. It should be noted
that each profile can be evaluated using a different set of metrics and their corresponding
weights. For instance, if there are two desired effects dl and d2, then a decision maker
might be interested in using Metric 4 (AUC) for dl while using Metric 1 and 2 for d2.

Table2: Computation of AUC Metric for COAs in Figure 3.16(a)

COA# 1 COA # 2
Time at Duration of Probability Area Time at Duration of Probability Area
which the Interval Of the Target d x t which the Interval Of the Target d x t

Change d Node Change d Node
Occurs t Occurs t
5 5 0.2 1 3 3 0.2 0.6
6 1 0.5 0.5 6 3 0.1 0.3
9 3 0.8 2.4 8 2 0.6 1.2
11 2 0.15 0.3 11 3 0.9 2.7

Sum 14.2 4.8
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Equation 1 can thus be modified as

fitness(COA x) = wI (w11 mI + W12 m 2 +......... + Win mn)
"+ W2 (W21 M. + W22 M2 . ............ + W2. M.)

"+ Wk (Wki mI + Wk2 m2 + ............ + Wklmfn) (2)

when there are k number of desired effects and each effect can be evaluated using n
number of metrics. wi represents the weight assigned to the desired effect i, while wij
represents the weights assigned to metric j for the same effect.

6.4.4 Constraints among Actionable Events

Several temporal and logical constraints might exist among the actionable events that are
not directly modeled using TIN. The presence of these constraints results in the need of a
constraint specification language that helps a system modeler in modeling
temporal/logical constraints. The paper proposes one such language that assists a modeler
in specifying these types of constraints. The consistency of these constraints can be
checked by propositional and temporal logic based systems depending upon the nature of
the given constraints. Table 3 describes the constructs of the proposed constraint
specification language (CSL). Constraints 1 and 2 are for the cases where it is required
that some actions must be in a specific state. Constraint 3 requires that Al and A2 should
have the same state (whether "True" or "False"). Constraint 4 specifies the time 't' at
which action A must take place while, Constraint 5 shows that action Al must happen
before action A2. If the value of v is zero then Al should happen earlier than A2 but if v
is non-zero (positive) then Al must happen at least v time units before A2. Constraint 6
specifies that two actions Al and A2 should happen at the same time.

Table 3: Constructs of the Constraint Specification Language

1. True A H Factual Constraint
2. False A / Factual Constraint
3. Same State Al A2 H Causal Constraint
4. At Time A t H Temporal or Factual Constraint
5. Before Al A2 v H Temporal or Causal Constraint
6. EqualTime Al A2 // Temporal or Conceptual Constraint

6.4.5 Specifics of the Evolutionary Algorithm

Once all the inputs to the ECAD-EA methodology are specified, the proposed approach
searches the probability profile solution space to determine effective strategies. Consider
the TIN shown in Figure 6. There are two actionable events, A and B, and one desired
effect H. Suppose a decision maker is interested in selecting a course of action that
maximizes the probability of H over a given time interval. The window of opportunity is
set as an interval between time instances 1 and 10 while the observation window is set
between time instances l and 20. Thus, the solution space consists of 22 x 102 = 400
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probability profiles. Figure 7 shows the solution space when both actions A and B are
true given that the fitness of a profile is measured using AUC metric. As it can be seen
from the figure, the global maximum lies in the region when action B is taken earlier than
action A.

2
A -C .- (3

B3 D 
H2 t,

: H

2

F

Figure 6: A Sample Timed Influence Nets

The proposed methodology explores the solution space of Figure 7 using an Evolutionary
Algorithm. As described in Section 7.3, the main characteristics of an EA are the
representation of individuals in the population, the selection mechanism, and the
variation operators. The population in the EA of ECAD-EA consists of candidate courses
of action that maximize a metric. Each individual in the population consists of actions
and the times at which the actions are executed. Due to the fact that all the variables in a
TIN have binary states, a bit representation is used for the actionable events. An integer
value representation is used for the time at which an action is executed. Thus an
individual (phenome) in the population of solutions has the following structure:

<Action 1, time (Action 1), Action 2, time (Action 2), Action n, time (Action n)>

-- S -

0 .4 -
-

4 
6

0.8.,

0 0 Time(A)

Figure 7: The Solution Space of the TIN Shown in Figure 6
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For the example under consideration, the AUC metric is used to evaluate the fitness of a
probability profile. The parent selection scheme is uniform stochastic, while the survival
selection scheme is binary tournament. The last major ingredient of the EA is the
variation operators. Since all the actions have binary states, a bit flip mutation operator is
used for them, while a delta x mutation operator is used for the times at which actions are
executed. The size of the population is kept at 10, while the EA is run till 20 generations.
The details of the EA are summarized in Table 4.

Table 4: Parameters of the Evolutionary Algorithm

Representation: Phenotype
Parent Selection: Uniform Stochastic
Survival Selection: Binary Tournament
Mutation: Bitflip / Delta x
Mutation Rate: 0.2
Crossover: one point
Population Size: 10
Number of Generations: 20

The EA of Table 4 is applied on the TIN of Figure 6 along with the constraints regarding
windows of opportunity and observation to find courses of action that maximize the AUC
metric for event H's probability profile. Several solutions with very close fitness values
are produced. Out of those solutions, the four top ones are shown in Table 5. The solution
shown in the first row is read as follows: "in order to maximize AUC, action A is made
True at time 9, while action B is made True at time 5". The other rows in the table can be
read in a similar manner. The results agree with the intuition developed earlier by looking
at the solution space of Figure 7. All the solutions are centered on the region where the
global maximum lies. The solutions also conformed to the temporal relationship exhibits
by Figure 7. In all the solutions, action B is executed before action A. Thus, the
advantage of having multiple solutions, having very close fitness, is that the solutions can
be generalized to produce a plan that describes time at a qualitative level or at a more
general quantitative level. A rather detailed discussion on this issue is presented in
Section 7.4.6.

Table 5: Four Best Solutions for TIN of Figure 6

A time(A) B tirne(B)
True 9 True 5
True 9 True 6
True 8 True 5
True 9 True 4
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Figure 8: The Constrained Solution Space of the Model Shown in Figure 6

The solutions of Table 5 are produced without considering any user-defined constraints.
Suppose it is required that a feasible solution must satisfy the constraint that A must be
executed before B. Using the constructs of the proposed CSL, the constraint can be
written as:

Before A B 0

The reduced solution space (based on AUC metric) is shown in Figure 8. When the EA of
Table 4 is run on this modified solution space, it generates courses of action that
maximize the AUC metric for event H's probability profile under the given constraint.
The four top courses of action are shown in Table 6. Like the previous case, the solutions
produced by the EA are in the region that is close to the global maximum of Figure 8.

Table 6: Four Best Solutions for the TIN of Figure 6 with Constrained Solution Space

A time(A) B time(B)
True 8 True 10
True 7 True 9
True 6 True 9
True 4 True 9

6.4.6 Generalization of Temporal Relationships

The purpose of generating alternate courses of action is to determine any pattern that
exists among the alternate courses of action. If there exists a pattern among the solutions
that can be generalized, then this information can be very helpful to a decision maker as it
gives more flexibility to him while he plans a course of action. This section presents a
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scheme for generalizing the temporal relationships that exist among the actions in the
solutions, produced by the EA, having very close fitness value. Consider the three
courses of actions shown in Table 7. There are four actionable events, namely, A, B, C,
and D. It should be noted that actions in a TIN are instantaneous. Thus, only two kinds of
temporal relationships can exist between actionable events, namely, 'Before' and 'Equal'.
Thus, a point in time can be either 'Before' another point in time or it can be 'Equal' to
some other point. For a detailed discussion of possible temporal relationships between
points and interval, refer to [Zaidi, 1999;Zaidi and Levis, 2001].

Table 7: Three Alternate Courses of Actions

A time(A) B time(B) C time(C) D time(D)

T 1 F 14 T 8 T 5
T 8 F 14 T 12 T 13
T 4 F 5 T 13 F 3

The temporal relationship that exists among the actionable events can be represented in
the form of a grid, as shown in Table 8. In each cell, there are 3 entries that correspond to
the 3 solutions presented in Table 7. For instance, in all 3 solutions time(A) is always less
than time(B). Thus, the relationship between A and B in all cases is "Before" as shown in
the cell corresponding the intersection of A and B (1 st Row and 2 nd Column). Similarly,
the relationship between A and C is "Before" in all three cases as time(A) is less than
time(C) in all solutions. D, on the other hand, is "Before" A in the last solution while A is
"Before" D in the first two solutions. Other entries in the table can be read in a similar
fashion. From the table, it can be seen that there are some cells where corresponding
actions have a similar type of temporal relationship in all the solutions. Thus, the
temporal relationship between those actions can be generalized. For instance, the
following generalization can be depicted from Table 8.

A Before B

A Before C

D Before B

The above information aids a decision maker during the planning stage of a mission. It
simply states that any plan that is developed to accomplish a particular objective should
satisfy the above mentioned temporal constraints. Figure 9 shows an instance of possible
relationships among the four actionable events on a single time line. The generalization
of temporal relationships can be extended further. For instance, in the temporal
relationship of Table 7, whenever D is in state True, it happens after A. On the other
hand, when D is in state False, it happens before A. Thus, the temporal relationship
between two actions can be generalized using If-Then type of rules. For instance, the
following rules can describe the temporal relationship that exists between A and D.
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Table 8: Temporal Relationships among Actionable Variables
A B C D

A Before Before Before
Before Before Before
Before Before

B

Before
C Before

Before Before

D -- Before Before
Before --

Before Before
Before

If D is True Then

A is Before D

If D is False Then

D is Before A

A D B C

time

Figure 9: Actionable Events on a Single Time Line

6.5 Application of the ECAD-EA Methodology

This section applies the ECAD-EA methodology on a real model. The TIN model, shown
in Figure 10, is developed to capture the events and the associated uncertainties in
combating insider threat2. It should be mentioned that only the structure of the TIN is
shown in the figure. The quantitative strengths and the time delays associated with each
arc are not -shown to keep things simple. The reader however, should not have any
difficulty in understanding the results presented in this section. The purpose of building
the insider threat model is twofold: to identify and analyze the actions that could be used
by an insider to become a security risk for an organization and to analyze the actions
taken by the organization to prevent any potential damage caused by the insider. In other
words, a system modeler is interested in identifying an effective strategy that maximizes

20 The model was presented to OSD-C31 on Dec 19, 2003 by Lee Wagenhals and Larry Wentz.
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the likelihood of achieving the desired effect: "Insider Does Not Have Strength of
Resolve to Attack". There are ten actionable events, drawn as the root nodes, in the
insider threat model:

Secr ity Procedure Insider Officially tooldarItk of

end Policy and informed or Detected Detection Above
background Check MIS.se Threshold

Inslder Beooee a. de
Diso trient with the A dSese A ctItosid

Adversery Recruitsielder and Identifies ./Insider Motliveded to

brefdrer •toilte. AIteo ______I _____________________,________Ateob Plen Tested enid

Plan Testing Pnesed d

IsdrCnutLieAnetysle an ' I 'lnslderDoNthv,Itdr C..d..t v /ICompleted / / Strength of Resolve to

ttAttack

/krider'Reo~oroe/ ~ ~~~ Iint ..-/ Aveilable to Attack

trelder Co-ops or insider ee eceaY / hlder oen Got
ReorritsColeegoec / Priviteges / leforMtlon HeWanted

/-ag / /: MIS Securly Manager - / ls Goo

tonitortog Atteck

Insider Inotiate
Ing antManager

Initiates Dynamc Security Manager
Reconfgretion Reduces, Priages

Figure 10: Influence Net for Insider Threat Model

Security Manager Reduce Privileges (A)
Security Manager Initiates Dynamic Reconfiguration (B)
Insider Initiates Attack Plan Testing (C)
AIS Security Manager Initiates Proactive Monitoring (D)
Insider Co-ops or Recruits Colleague (E)
Insider Conducts Live Discovery (F)
Insider Initiates Intelligence and Planning (G)
Adversary Recruits Insider and Identifies Target (H)
Insider Becomes Discontent with Employer (I)
Conduct Security Procedure and Policy and Background Check (J)

The labels next to the actions are used in the sequel to refer to the corresponding actions.
The EA, as explained in Section 4.5, is applied on the TIN developed for insider threat.
The parent selection scheme is set to uniform stochastic, while the survival selection is
set to truncation. Population and generation sizes are set to 20 and 15, respectively. The
window of opportunity is between 1 to 20 time units, while the window of observation is
between 1 to 25 time units. The top 4 results produced by the ECAD-EA methodology
are presented in Table 9. There are 20 elements in each solution. The odd elements (1, 3,
5, ... ) represent the state of the actionable events, while the even elements (2,4,6,....)
represent the time stamps at which the state of the actions are decided. The order of the
actions in a particular solution is same as described above. The solution described in the
first row of Table 9 says that "Security Manager Reduce Privileges" is made True at time
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9 while "Security Manager Initiates Dynamic Reconfiguration" is made True at time 4
and so on.. Figures 11 (a) and 11 (b) show the comparison of Solution 1 to Solution 2 and
Solution 1 to Solution 4, respectively. The probability profiles produced by all the
solutions are close, i.e., it is hard to say which one is better than the other. In this kind of
situation, the best thing is to produce a certain percentage of the top solutions (options)
and then let the decision maker consider other characteristics which are not explicitly
mentioned while planning a course of action in making his choice.

Table 9: Four Best Solutions for the TIN of Insider Threat Model

S.#

1. 1 9 1 40 8 1 2 019 012 011 1 17 0 1 1 8
2. 1 6 1 1 1 111 8 0 6 1 9 112 0 5 114 1 6
3. 1 4 1 2 0 181 3 0 3 1 9 113 1 19 014 0 6
4. 1 1 170 41120 60 110190 15 01609

The temporal relationship that exists among the solutions of Table 9 can be generalized to
produce a feasible time line that aids a decision maker during the planning stage of a
mission. Applying the same approach as explained in Section 4.6, the following temporal
relationships are found among the 4 solutions shown in Table 9:
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0 0.6
B
A 0.5

L 0.4

T 0.3
Y

0.2
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0.0 2 4 6 8 10 12 14 16 18 20 22 24 26
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Insider Does Not Have Strength of Resolve to Attack Solution •1

Insider Does Not Have Strength of Resolve to Attack Solution #2

Figure 11: Comparison of Different Solutions: (a) Solution 1 vs. Solution 2
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Figure 11: Comparison of Different Solutions: (b) Solution 1 vs. Solution 4

A Before F A Before G B Before A

B Before G B Before H B Before J

D Before G J Before F J Before G

A possible time line based on the above temporal relationships is shown in Figure 12.
The above generalization also matches with the intuition one could develop after looking
at the set of actions present in the problem. The temporal relationships roughly say that
the actions taken by an organization (A, B, D, and J) should be taken before the actions
taken by an adversary (F, G, and H).

B A J H D CG E FI

_ time

Figure 12: Actionable Events on a Single Time Line

It can be seen from the probability profile of Figure 11 (a) that Solution #2 is in fact better
than Solution #1 during the time interval 2 and 11. However, during the whole duration
of 25 time units, Solution #1 turns out to be better based on the AUC metric. If a system
modeler is interested in only the probability profile during the time interval 2 and 11, then
the solutions produced by the ECAD-EA would be different. To demonstrate this fact, the
EA is run again on the insider threat model, but this time the fitness of a solution is
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evaluated by the area under a probability profile during time interval 3 and 12. The top 4
solutions are shown in Table 10, . The probability profiles produced by the two top
solutions are shown in Figure 13(a). Again, there is not much difference between the
performances of the two solutions. Figure 13(b) compares the profiles of the best
solutions produced using AUC and Interval metric. As expected, the solution based on
interval metric performs better during the time interval 3 and 12.

Table 10: Four Best Solutions based on Interval Metric for the Insider Threat Model

S. #

1. 11120 61 10171130 2018 015 110

2. 1111 1 110 1 1 0 4 0 1 117 119 0 19 1 10
3. 1 41 2 119 117 1 5 0 3 114 1 11 0 3 0 13

4. 1 21 4 012 0 5 0 111 4 0 6 116 0 15 1 17

Table 11: Four Best Solutions for Insider Threat Model Having Few Constraints

S. #

1. 1 111015 1401216090 8 0 111

2. 1 111115 1401216090 80511
3. 1 1 1 1 0 10 1 4 0 12 1 6 0 2 0 14 0 1 1 1

4. 1111015140121618080513
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Figure 13: Comparison of Different Solutions: (a) Solution 1 vs. Solution 2
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Figure 13: Comparison of Different Solutions: (b) Solution 1 vs. Solution 4

The solutions of Table 11 are produced without considering any constraints. Suppose it is
required that 'Security Manager Initiates Dynamic Reconfiguration' must be true. Based
on the temporal constraints, 'Insider Initiates Intel and Planning' must be at least 3 time
units before 'Insider Initiates Attack Plan Testing'. During the plan execution, it turns out
that 'Insider Conducts Live Discovery' at time 6. Furthermore, 'Security Manager
Initiates Proactive Monitoring' at time 4. Finally, it is discovered at time 12 that the
insider attempts to "Co-ops or Recruits Colleague" failed. All of these constraints can be
written in terms of the Constraint Specification Language described earlier.

Before 'Insider Initiates Intel and Planning' 'Insider Initiates Attack Plan Testing' 3
True 'Security Manager Reduce Privileges'
AtTime 'AIS Sec Mgr Initiates Proactive Monitoring' 4
True 'Insider Conducts Live Discovery'
At-Time 'Insider Conducts Live Discovery' 6
False 'Insider Co-ops or Recruits Colleague'
AtTime 'Insider Co-ops or Recruits Colleague' 12

The top four best solutions produced by the ECAD-EA methodology when applied on the
insider threat model having the above constraints are presented in Table 11. The results
presented so far consider only single desired effect, but the proposed approach works
equally well on problems having multiple desired effects.
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6.6 Conclusions

This section presents a methodology to identify effective courses of action in complex
uncertain situations. The approach works on Timed Influence Nets that are used to model
the uncertainties present in such complex situations. The presented approach uses
Evolutionary Algorithms to identify effective courses of action. The approach not only
provides a single best solution but it also provides several alternate solutions that are
close enough to the best solution. These alternate solutions aid a decision maker in
understanding the impact of actions' time of executions on the desired effect. The paper
suggests a temporal generalization based on the similarities that exist in the temporal
relationships among the actions.

A course of action is evaluated based on some pre-defined metrics. The paper discusses a
set of metrics that can be considered, either individually or jointly (depending upon the
situation), while evaluating a course of action. A constraint specification language that
aids a system modeler in specifying the temporal and causal constraints among the
actionable events is also presented.
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SECTION 7

Modeling for Future Command and Control Architectures

Holly A. H. Handley and Alexander H. Levis

7.1 Introduction

As the military moves to redesign command and control architectures to incorporate
information technologies, models are necessary to predict the behaviors and performance
of the proposed command structures. However, many of the performance metrics, such as
speed of command and shared situational awareness, have not been included in previous
command and control models. Models of command and control architectures have been
developed over the last eight years in order to examine the behavior and performance of
experimental command centers performing missions in a laboratory environment
[Handley et al., 1999]. Each model met the requirements of the experiment and was
validated with post experimental data; however, each model was limited to the conditions
of the hypotheses and the performance metrics of the organizations and missions being
developed.

A task process model has been developed as part of a recent pre-experimental modeling
iteration for a subject experiment [Handley and Levis, 2003]. While previous models had
focused on the decision maker process and metrics of the decision maker workload, the
task process model captures the stages of a task over its lifetime, including information
needs and decision maker activity required at each stage. By using the task process
model, metrics for decision maker participation and information requirements regarding
specific tasks can be elicited. The task process model was found to correlate well with
tasks that required a single decision maker completing a task with a single resource. The
model did not explain, however, why some tasks stop mid process and resume at a later
time and it does not represent decision maker synchronization well, i.e., two or more
decision makers supplying resources within a specified time window to complete a task.
Both of these conditions require a decision maker model to work in conjunction with the
task process model, in order to explicitly represent the interaction between the task and
the decision maker.

In order to reconcile the task process model with an existing decision maker model, the
five-stage interacting decision maker model [Levis, 1995], the empirical data collected
from the subject experiment used to validate the task process model were examined.
From the data, the task stages that required different decision makers were identified,
along with delays in the task stages due to decision maker synchronization and
interruptions in task processing due to engaged decision makers. The empirical data
offered insights on how decision makers coordinated on complex tasks. An enhanced
model was then created that combined the task process model and the decision maker
model. The enhanced model will allow more sophisticated modeling of interactions
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between decision makers, such as decision maker synchronization and information
sharing. By combining the task process model with the decision maker model, surrogate
measures for speed of command and situation awareness can be developed and used to
evaluate the behavior and performance of command and control information and decision
processes, essential to assess any future command and control architecture.

The remainder of the paper is organized as follows: the next section describes the task
process model while section 3.0 identifies its limitations. Section 4.0 describes the five
stage decision maker model and section 5.0 describes the enhanced model that results
from joining these two component models. Section 6.0 describes the performance
measures used with this model, specifically speed of command and shared situational
awareness; section 7.0 concludes the paper.

7.2 Description of the Task Process Model

The task process model was designed in conjunction with a subject experiment
examining the relationship between different command and control architectures and
alternative scenarios [Diedrich et al., 2002]. The task process model emulates the series
of stages a task follows over its lifetime; each task that appears in the scenario is
represented and evaluated separately. A task is an activity that entails the use of relevant
resources and is carried out by an individual decision maker or a group of decision
makers to accomplish the mission objectives or in defense of own assets. The task stages
are based on the simulator used in the subject experiment, the Dynamic Distributed
Decision-Making (DDD) simulator. The model was developed and validated using trial
experimental data; see Handley & Levis [2003] for a complete description of the model
development.

The task process model is shown in Figure 1. The first stage, Appear, occurs when a task
(in this case a threat) is first present in the environment. This is controlled by the input
scenario which specifies the time that each task appears. As soon as the task is noticed,
either by a decision maker or a sensor, it is Detected and a decision maker initiates its
processing. The task is then Identified; this indicates the decision maker knows what type
of task it is and what type of resource (in this case a weapon) can be used to process the
task. When the weapon is launched and travels to collide with the task, the task is defined
as Attacked. When the resource has succeeded in completing the task (the weapon has
destroyed the threat), the task is considered Destroyed. Lastly, the task Disappears from
the simulator screen.

Appear IF• Detect t. Identify ---. Attack •_Destroy DisappearI

Scenario Decision Maker Resource Task

Figure 1: Task Process Model
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The output of the task process model is a task completion time for every task in the
scenario. Each stage of the sequential model has a delay determined by the attributes of
the task, decision maker, or resource. Once the task enters the detect stage, it proceeds
through the process uninterrupted, accumulating the delays at each stage until
completion. The finish time of the task is the sum of the delays of each stage in the
process; the task delay is the completion time minus the time the task first appeared,
representing the actual processing time of the task:

tfinish t appear + tdetect + tidentify + tattack + tdestroy + tdisappear. PI ]

tdelay =tfinish -tappear [2]

The time the task appears, tappear' is predetermined by the scenario; the scenario is a list of
all input tasks and the time they enter or appear in the model. The detect delay, tdetect, of
each task is variable depending on the activity of the decision maker. If the decision
maker responsible for the task is not currently acting on another task, the current task will
be detected immediately. If, however, he is engaged with another task, the current task
will wait until he is unoccupied; this variability is represented by the larger arrow in
Figure 1. The delay associated with identifying the task, tidentify' represents the processing
time by the decision maker. At the end of this stage the decision maker has identified the
type of threat the task represents and the appropriate type of resource to use against it.
This stage has a fixed delay to represent the decision maker's processing time. This value
was determined empirically by comparing model simulation data at increasing levels of
decision maker delay to trial experimental output data. There is also a workload limit of
one task imposed on the model at this stage. In the Attack and Destroy stages the
parameters of the resource chosen by the decision maker to counteract the task provide
the delay times; tattack is the launch delay of the resource and tdestroy is the travel time of the
resource to the location of the task. The delay of the Disappear stage, tdisappear, represents

the delay between the time the threat is attacked and the time it disappears from the
display; this value is specific to each task class.

The model was implemented using Colored Petri nets, a graphical modeling language and
a powerful modeling tool used to expose critical time dependencies, task concurrencies
and behavior that is event driven. The model was implemented in Design/CPN and
simulated under different conditions as determined by the experimental design. While the
DDD simulator creates the environment for the subject experiments, it also captures the
subject's actions and task data throughout the course of the experimental scenario. This
information is made available after the experiment in log files, which can be sorted by
decision maker, resource, or task identifiers to find timing information. The model was
validated after the subject experiment by comparing the timing of the task stages
recorded in the log files with the timing of the task stages used in the simulation model.

Certain delays in the process are fixed based on the task type or the resource chosen
while other delays are variable depending on the activity level of the responsible decision
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maker. The task pattern in the scenario elicits different decision maker activity levels
depending on the architecture; the architecture determines what resources a decision
maker controls and what types or locations of tasks each is responsible for. This model
was used to predict congruence between architectures and scenarios. Scenarios varied the
arrival time, type, and location of tasks, which in turn changed the loading on decision
makers and affected his choice of resource; congruence was evaluated as the ability of the
different architectures to process the scenario tasks in a timely manner. The task process
model allows the evaluation of individual task delays; looking at a single task process
allows the correlation of the task delay, resource used and decision maker engaged with
the experimental data Looking across multiple task processes can be used to identify
concurrency between tasks, decision maker workload at a particular time, and platform
activity across time.

7.3 Limitations of the Single Task Model

Empirical data from the subject experiment [Handley and Levis, 20031 was used to
validate the task process model. The performance of the model was validated by
comparing the task completion times of the model to the experimental results. The
average correlation between the model data and the experimental data was 0.86, with an
average of 58 tasks per scenario (see Appendix A). While the final output of the task
stages correlated well, there was a discrepancy between the modeled tasks and some of
the experimental results. Examination of the time data of the experimental task stages
indicated that often tasks were interrupted in the middle of the process and then were
resumed later on. In order to verify the sequence of stages that composed the task
process, experimental data from two task classes (threats) were examined in detail:
enemy patrol boats and enemy air attacks. Both of these tasks required one decision
maker and one resource to complete. Extraction of the empirical stage delays showed that
the individual tasks fell into two categories: those that had an interruption, or a large time
delay, in their task process, and those that did not. Note that the DDD simulator is a real
time simulation, i.e., one second of real time represents one second of simulation time.
Examples of the simulation time at each task stage are shown in Figure 2.

Arrive Detect Identify Select Attack Destroy
Patrol Boat #218
Team MA 370 371 372 430 434 439
Team MC - 370 371 372 584 588 593
Interruption
Air Attack #406
Team SA 1251 1254 1322 1340 1342 1347
Team SE - 1251 1254 1322 1380 1389 1394
Interruption

Figure 2: Example Tasks with Task Process Interruptions

The empirical data suggests that in some instances there is a break in the processing
between the Identify and Attack stages. The stage Select was introduced in the log files to
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indicate the continuation of a task after an interruption. This break represents the decision
maker disengaging from the current task to attend to another, higher priority task, before
returning to the original task. This requires including another stage in the task process
model, the Select stage, which represents another variable delay depending on the activity
level of the decision maker. This also implies the need for a coupling of a decision maker
model with the task process model to allow for variations in the task processing due to
the activity level (workload) of the decision maker.

Many of the tasks in the scenario required the interaction of one or more decision makers
to combine their resource in order to execute the task. These tasks were not included in
the model simulation, but were present in the experiment and in the empirical data
collected for examination. An example of the interaction of the decision makers
synchronizing their resources is shown in Figure 3:

Stage Time DM Resource

04-Select 1726 2

04-Select 1756 3

11-Attack 1759 2 SOF-500

12-Assist 1761 3 SOF-501

18-Destroy 1789 2

Figure 3: Decision Maker Synchronization on Task 28, Team D Run S2

These synchronized tasks could not be included in the original task process model design;
however, they can be addressed if the decision maker model is included explicitly.

7.4 A Five Stage Decision Maker Model

In order to study the behavior of an organization, it is necessary to have a model of its
components, namely the individual decision makers. March and Simon [1958]
hypothesized that decision makers follow a two step process: first determining the
situation and then determining a response. This led to a two stage decision maker model
by Wohl [1979] which was expanded to four stages by Boettcher and Levis [1982] in
order to accommodate interactions between decision makers. Remy and Levis [1986]
formalized these interactions. Levis [1992] presented a model of a five stage interacting
decision maker that subsumed the previous models. This model presupposes that the
decision makers are executing well-defined tasks for which they have been trained and
that there is a limit to the amount of processing a decision maker can perform [Boettcher
and Levis, 1982] in accordance with the bounded rationality constraint [March, 1978].

The five stage decision maker model is shown in Figure 4. The decision maker receives a
signal, x, from the external environment or from another decision maker. The situation
assessment stage (SA) represents the processing of the incoming signal to obtain the
assessed situation, z, which may be shared with other decision makers. The decision
maker can also receive a signal z' from another decision maker; z' and z are then fused
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together in the information fusion (IF) stage to produce z". The fused information is then
processed at the task processing (TP) stage to produce v. A command or control
information from another decision maker is received as v'. The command interpretation
(CI) stage then combines v and v' to produce the variable w, which is input to the
response selection (RS) stage. The RS stage then produces the output y to the
environment, and/or the output y' to other decision makers.

Z' V9

Sz zv w Y
SSA -PR IF o TP --- CI 10 RS

Figure 4: Five Stage Interacting Decision Maker

The model depicts explicitly the stages at which a decision maker can interact with other
decision makers or the environment. A decision maker can receive inputs from the
external environment only at the SA stage. However, this input x can also be from
another decision maker (the y' output) from within the organization. A decision maker
can share his assessed input through the z output at this stage. The z' input to the IF stage
is used when the decision maker is receiving a second data input. This input must be
generated from within the organization and can be the output of another decision maker's
SA or RS stage. The fused information from the IF stage, z", is the input to the TP stage.
The decision maker's function is performed at this stage and results in the output v. In the
CI stage, the decision maker can receive control information as the input v'. This is also
internally generated and must originate from another decision maker's RS stage. In the
RS stage, an output is produced; y is the output to the environment and y' is the output to
another decision maker. Thus the interactions between two decision makers are limited
by the constraints enumerated above: the output from the SA stage, z, can only be an
input to another decision-maker's IF stage as z', and an internal output from the RS stage,
y', can only be input to another decision maker's SA stage as x, IF stage as z', or CI stage
as v'.

A decision maker need not exercise all five stages when performing a task. Depending on
the inputs and outputs required, a decision maker can instantiate different subsets of the
five stage model.

7.5 Enhanced Task Process Model

The two limitations identified in the current task process model are the inability to allow
a decision maker to disengage from a task in order to initiate the processing of another
task and the inability to represent complex tasks, i.e., tasks requiring multiple decision
makers to synchronize resources to accomplish a task. Both of these limitations require a
coupling of the task process model with the five stage interacting decision maker model.
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7.5.1 Task Interruption

Currently in the single task process model, the delays of the Detect and Identify stages
are due to the decision maker; the decision maker is implicitly associated with these task
stages. This relationship can be made explicit by associating the Detect-Identify stages of
the task process model with the Situation Assessment (SA) - Response Selection (RS)
stages of the decision maker model. The task process model is now constrained by the
decision maker model during these stages. An additional task stage was identified in the
empirical data: the Select stage preceded the Attack stage and was used to indicate that a
decision maker had continued processing the interrupted task. The decision maker SA-RS
stages can again be associated with the task process Select - Attack stages. This coupling
of the task process model with the decision maker model is shown in Figure 5.

--------------- rT--------------------

,cti Select Attack Dstoy Disappear

'II

I I

Figure 5: Single Task Model Coupled with Decision Maker Model

This coupling allows a second variability in the task processing: the original interruption
in processing occurs between the Appear and Detect stages, which represents the variable
delay due to an engaged decision maker, and an additional interruption between the
Identify and Select stages, when a decision maker may disengage from the task in order
to attend to another task. The Select stage delay is also a variable delay depending on the
activity of the decision maker. The linear delay equations are modified by adding the
additional variable delay term tselect:

tfinish t appear + tdetect + tidentify + tselect + tattack + tdestroy+ tdisappear. [3]

tdelay= tfinish - tappear [4]

7.5.2 Decision Maker Synchronization

The task process model is limited in that it can currently process only tasks requiring a
single decision maker with a single resource. While these tasks did account for the
majority of the tasks in the experimental scenarios, these were mostly tasks that defended
own assets. The tasks that defined the objective of the scenario mission were the complex
tasks that required two or three decision makers to synchronize their resources to
accomplish the task within a defined time window; if any one decision maker applied his
resource outside of that time window the task would fail.
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In order to represent the synchronization of decision makers in the model, the different
roles a decision maker assumes in processing different types of tasks must be defined in
terms of the five stage model. Three decision maker roles have previously been identified
[Levis et al., 1998]. The Independent role is defined as a decision maker acting on a task
that he can then execute without interacting with other decision makers; this is the role of
the single task in the current task process model. The Leader role is defined when a
decision maker has to execute a task by interacting with other decision makers, however
this decision maker is the initiator and sends synchronization messages to the other
decision makers. The Follower role is defined for decision makers who must provide
resources to execute a task with other decision makers, but it is another decision maker
that sends the synchronization information.

The Independent role is used in the single task process model; a single decision maker
with a single resource processes the task. Figure 4 and equations [3] and [4] describe this
model. The Leader and Follower roles are bound together by the interactions required to
synchronize their efforts. In all complex tasks, the commander's intent identifies a
specific decision maker as the leader for that task. This decision maker will initiate the
task and interact with the other decision makers as necessary to complete the task. These
interactions are shown in Figure 6.

Ledr----------------- i-----------------------------I

F". .. . .. . .. . . T Idenif

[• :: ~ ~~Select --1etry Dsapa

Figure 6: Leader and Follower Role Interactions

The Leader (DML) will first Detect and Identify the task; he identifies the additional
resources and their responsible decision makers he needs for the complex task. The
Leader is modeled with SA-RS stages, similar to the Independent role with the addition

of the y' output. The y" output is used to alert the Follower decision maker(s) to Detect
and Identify the task in preparation for a synchronized attack. The Follower (DMF) is
modeled with the same SA-RS combination and the y" output is used at the Leader's

Select stage to indicate the readiness of the Follower decision makers; the Leader's Select
stage is still variable dependent on the other tasks he is engaged with. The Leader will
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then begin the attack by launching his resource and signaling the other decision makers to
synchronize their resource launch. The Leader's Select stage is modeled by a SA stage to
indicate the task has been selected and an IF stage to include the "ready" signal from the
Followers. The Attack stage is modeled as a RS stage, which indicates the launch of the
resource and again a y' signal is sent to interact with the Follower. The Follower's Select
stage also has a variable delay depending on his task priorities; the SA stage represents
his Select stage. The Follower's task process stage is indicated as "Assist" in the DDD
simulator; the Assist stage is modeled as a CI stage that waits for the synchronization
signal from the Leader, and then a RS stage where the resource is launched.

The completion time of the task must be represented as a combination of delays from
both the Leader and the Follower decision makers. In terms of the delays incurred by the
Leader, the task completion time is:

tfinish" = appear + tdetectL + tidentifyL + tselectL + tIFL + tattackL + tdestroy + tdisappear. [5]

However, t1FL, which represents the delay associated with waiting for the "ready"

response from the Follower decision maker is not a valid entry; it cannot be traced as a
task stage in the DDD simulator. This delay can be represented, however, as the Detect
and Identify stages of the Follower decision maker, tdetectF + tidentify,; but these delays may
be occurring concurrently with the Select delay of the Leader. The delay can then be
correctly represented as a maximum of the pair:

t finish = tappear + tdetectL + tidentifyL + tselectL + max [0, (tdetectF + tidentifyF) - tselectL]

+ tattackL + tdestroy + tdisappear. [6]

Likewise, the Destroy stage of the task is dependent on all synchronized resources
arriving with the window of attack determined by the task class. In this case:

tassistF tattackL < A tattack [7]

where A taftack is the pre-determined time completion window of the task; if this condition
is not met the threat is not destroyed. For completeness:

tdelay = tfinish - tappear' [8]

The enhanced task process model was implemented as a Colored Petri net and re-
simulated with the experimental scenario. The model output was again correlated with
the experimental data; the average correlation over 12 teams was 0.80 with an average of
71 correlated tasks (see Appendix A). In order to add complex tasks to the model, the
scenario was modified to accept the mission tasks. The mission tasks are complex tasks
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that must be completed in precedence order and require multiple resources; in some
architectures one decision maker may own the complete set of resources, in other
architectures he must coordinate with other decision makers to complete the set of
resources required. While the existing scenario, the independent tasks, was an input list of
tasks and their (fixed) arrival time, now the mission tasks are triggered by the completion
of other tasks and as such have no fixed arrival time. This makes the correlation more
complex as not only is the completion time variable, but also the actual appear time.

The delay times of this model are dependent on the interaction of the architecture and the
scenario, and on the interaction of the Leader and Follower decision makers in complex
tasks. The decision maker SA delay times (tdetect, tselect) represent the delay for the

decision maker to commence work on the task, either initially or after an interruption.
This delay depends on what other tasks the decision maker is engaged on and task
priorities. The IF and CI stages are junctions where the decision makers exchange
information; task processing suspends until all information is exchanged. It would be
difficult to determine these compound delays without executing the model in simulation
mode.

7.6 Performance Measures

7.6.1 Speed of Command

Speed of Command is defined as the time from when a threat is detected until it is
engaged. A surrogate measure for the speed of command in the enhanced task process
model is the task delay, i.e. the difference between the completion time of the task and

the time the task appeared; the time from the Detect stage to the Disappear stage in the
model. This is equation [4] for a single task and equation [8] for a synchronized task.
Tasks can be evaluated individually using this metric as in Figure 6, or the accumulated
task delay over the course of the scenario can be compared across architectures, as in
Figure 7.

The data in the graphs show the simulation results for two different architectures, termed
Functional and Divisional; in both cases the same scenario was used. The delay of each
task versus the time it appears for each architecture is shown in Figure 6. While this
graph shows the differences in delay for each individual task, it does not give a good
indication of how each architecture is performing with regards to Speed of Command. A
better indicator of the performance is the accumulated delay of individual tasks as the
scenario progresses over time as shown in Figure 7; the Divisional architecture shows an
improvement of 17.8% in accumulated task delay, or Speed of Command, over the
Functional architecture. The enhanced model includes the variability of the decision
maker's attention to the task, not only the initial delay in the Detect stage, but also delays
that may occur due to interruptions in the task processing at the Select stage. These
results concur with the experimental output; for this scenario, termed the "M" scenario,
the Divisional organization outperformed the Functional organization.
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Figure 6: Speed of Command as Task Delay for Individual Tasks
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Figure 7: Speed of Command as Accumulated Task Delay for Scenario

7.6.2 Shared Situational Awareness

Shared Situational Awareness is the ability of a team of decision makers to perceive and
understand a tactical picture that is complete and consistent across the team. In the single
task process model there was no mechanism for decision makers to interact on a task;
therefore there was no metric to gauge the situational awareness of multiple decision
makers on the same task. The enhanced model specifically allows decision makers to
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synchronize their efforts to complete a task, which allows the opportunity to propose a
metric to observe shared situation awareness.

On complex tasks that require multiple decision makers, a time window exists for each
task in which all required resources must be fired. This allotted time can be described as a
window of attack whose parameters are determined a priori by the requirements of the
task; different task types may have different windows of attack. Two quantities are
needed to specify the window of attack: the lower and the upper bounds of the time
interval, ts and tf. respectively, or one of the bounds and the length of the interval, e.g. t.
and A t [Cothier and Levis, 1986]. The lower bound of the window is the time the first
resource attacks the task and the length of the window is the predetermined time window
of attack. In order for the attack to be successful, the time the final required resource
attacks the task must be within the window's bounds:

tf< ts+ A t [91

This window of attack (which is equivalent to [7]) can represents a surrogate measure for
Shared Situation Awareness for the decision makers participating in the task. For the task
to succeed the team of decision makers all need to apply the correct resources to the
correct task within a finite period of time indicating a consistent and complete tactical
picture. As the number of decision makers who participate in an attack increase, this
metric becomes more meaningful.

The enhanced task process model can provide insights on Shared Situational Awareness
based on the interactions between the Leader and Follower decision maker on
synchronized tasks. There are three interaction points between the two roles: the output of
the Leader's Identify (RS) stage to the Follower's Detect (SA) stage, the output of the
Follower's Identify (RS) stage to the Leader's Select (IF) stage, and the output of the
Leader's Attack (RS) stage to the Follower's Assist (CI) stage. While the first two will
affect the overall delay of the task, the last interaction affects the final synchronization of
the launch of resources. The critical point is the variable delay of the Follower's Select
stage; if he delays too long resuming processing of the task, he will miss the window of
attack initiated by the Leader's resource launch. This variable delay is a function of the
architecture interacting with the scenario and can be used to compare across architecture
scenario pairs; an example is shown in Figures 8 and 9.

Figure 8 shows both the Leader and Follower attack times for a set of 14 complex tasks,
similar to those used in the "M" scenario above but in a separate, investigational scenario
where the tempo of operations has been increased, completed by both Divisional (Div)
and Functional (Fun) architectures. This can be used to evaluate how situational
awareness varies over the course of this investigational scenario. In this case situational
awareness seems to improve over the course of the scenario for both architectures. Figure
9 makes explicit the attack delay (tf - ts) versus the task window of attack (Atattack). The
Functional architecture has seven tasks that miss the window and the Divisional has four.
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Figure 9: Shared Situational Awareness as Attack Delay

For a consistent Attack Window of 100 simulation seconds, the average window for the
Divisional architecture is 73.8, while for the Functional architecture it is 136.4. In this
case the Divisional architecture has a 46% improvement in Shared Situational
Awareness. This metric was difficult to obtain from the subject experimental data, as
many of the complex tasks were not attempted, and so no window data comparison was
made.
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7.7 Conclusion

The task process model was designed in conjunction with a subject experiment
examining the relationship between different command and control architectures and
alternative scenarios; the task process model emulates the series of stages a task follows
over its lifetime. Limitations to the model were identified, specifically the inability to
allow a decision maker to disengage from a task in order to initiate the processing of
another task and the inability to represent complex tasks, i.e., tasks requiring multiple
decision makers to synchronize resources to accomplish a task. Both of these limitations
require a coupling of the task process model with a decision maker model. The five stage
interacting decision maker model depicts the stages at which a decision maker can
interact with other decision makers or the environment, i.e. the task process. The
relationship between the models was made explicit by associating the Detect - Identify
and Select - Attack stages of the task process model with the Situation Assessment (SA)-
Response Selection (RS) stages of the decision maker model. The task process model is
now constrained by the decision maker model during these stages.

The delay times of the enhanced task process model are dependent on the interaction of
the architecture and the scenario, and on the interaction of the decision makers executing
complex tasks. These can be used to define surrogate measures for Speed of Command
and Shared Situational Awareness; the accumulated delay time was used to compare the
Speed of Command across architectures and the task window limit was used to evaluate
Shared Situational Awareness. By using empirical data collected after a subject
experiment, enhancements made to an existing model have resulted in a model that is
more realistic and versatile in evaluating command and control architectures operating
under different scenarios. The performance measures reflect the completion times of time
critical tasks; including the variability of the decision maker's attention to the task, not
only the initial delay in the Detect stage, but also delays that may occur due to
interruptions in the task processing at the Select stage and the interaction of decision
makers due to the synchronization of the launch of resources. The model will be a
valuable tool for evaluating proposed future command and control centers.
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Appendix A: Correlation Data and Statistics
For each trial in the subject experiment, indicated by Team, a correlation was performed
between the experimental completion time data and the simulated model completion time
data. This value, indicated by Correlation, was obtained by correlating the tasks that were
completed by both the team and the simulation; this number varies by team and is
indicated by Number of Tasks. For each correlation a significance test was performed by
using the F statistic; the results of the test are shown in the columns F Value and F
Significance. In all cases, the null hypothesis of no predictive value can be rejected.

Table A. 1: Original Task Process Model Correlation Statistics Between Experimental and
Simulated Output

Team Correlation Number of Tasks F Value F Sianificance
FSf2W .77 62 89.60 1.64E-J13
FSf2D .83 59 124.14 6.,16E-16
FSf2O .75 60 76.02 3.87E-12
FMd2W .81 58 107.95 1.12E-14
FMd2D .88 48 165.78 7.37E-17
FMd2B .92 57 315.21 1.95E-24
DSf2E .90 52 217.20 7.88E-20
DSf2C .84 54 127.74 1.28E-15
DSf2A .88 57 195.66 9.26E-20
DMd2E .8 161 141.15 2.74E-17
DMcd2C .95 62 602.50 5.50E-33
DMcI2A .97 60 822.47 5.96E-36

Table A.2: Enhanced Task Process Model Correlation Statistics Between Experimental
and Simulated Output

Team Correlation N umber of Tasks F Value F Significance
FSf2W .71 70 70-76 3.91E-12
FSf2D .75 74 90-29 2.44E-14
FSf2B .68 74 60.53 3.94E--11
FMd2W .79 75 1119.56 4.94E-17
FMd2D .87 63 183.15 4.97E-20
FMd2B .92 72 405.64 7.67E-31
DSf2E .82 63 124.71 2.2IE-16
DSf2C .76 66 87.10 1.49E-13
DSf2A .67 70 55.39 2.25E-10
DMd2E .79 71 114.08 2.88E- 16
DMd2C .88 78 253.89 6.14E-26
DMd2A .90 77 334.47 2.30E-29
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